Causal-Inference Machine Learning Reveals the Drivers of China’s 2022 Ozone Rebound

因果推理 推论 中国 机器学习 人工智能 臭氧 计算机科学 认知心理学 心理学 计量经济学 气象学 经济 政治学 地理 法学
作者
Lin Wang,Baihua Chen,Jingyi Ouyang,Yifei Mu,Ling Zhen,Lin Yang,Wei Xu,Lina Tang
出处
期刊:Environmental science & ecotechnology [Elsevier]
卷期号:24: 100524-100524
标识
DOI:10.1016/j.ese.2025.100524
摘要

Ground-level ozone concentrations rebounded significantly across China in 2022, challenging air quality management and public health. Identifying the drivers of this rebound is crucial for designing effective mitigation strategies. Commonly used methods, such as chemical transport models and machine learning, provide valuable insights but face limitations-chemical transport models are computationally intensive, while machine learning often fails to address confounding factors or establish causality. Here we show that elevated temperatures and increased solar radiation, as primary meteorological drivers, collectively account for 57 % of the total ozone increase, based on an integrated analysis of ground-based monitoring data, satellite observations, and meteorological reanalysis information using explainable machine learning and causal inference techniques. Compared to the year 2021, 90 % of the stations reported an increase in the Formaldehyde to Nitrogen ratio, implying a growing sensitivity of ozone formation to nitrogen oxide levels. These findings highlight the significant causal role of meteorological changes in the ozone rebound, urging the adoption of targeted ozone mitigation strategies under climate warming, particularly through varied regional strategies that consider existing anthropogenic emission levels and the prospective increase in biogenic volatile organic compounds. This identification of causal relationships in air pollution dynamics can support data-driven and accurate decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郝田田完成签到,获得积分10
1秒前
1秒前
zhouyu发布了新的文献求助10
1秒前
小其发布了新的文献求助10
2秒前
谨慎的哈密瓜完成签到,获得积分10
2秒前
小王发布了新的文献求助10
2秒前
wall_e完成签到,获得积分10
2秒前
无机盐完成签到,获得积分10
2秒前
晚风发布了新的文献求助10
2秒前
sun发布了新的文献求助10
3秒前
3秒前
JamesPei应助帅气一刀采纳,获得30
4秒前
优秀的素发布了新的文献求助10
4秒前
小二郎应助钱仙人采纳,获得10
4秒前
斯滕伯格格完成签到,获得积分10
4秒前
英姑应助黎明采纳,获得10
4秒前
5秒前
吴硫发布了新的文献求助10
5秒前
zkexuan发布了新的文献求助10
6秒前
橙子完成签到,获得积分10
6秒前
上官若男应助早睡计划采纳,获得10
6秒前
赵子轩发布了新的文献求助10
7秒前
7秒前
8秒前
wanci应助陈陈陈1采纳,获得50
8秒前
领导范儿应助安德采纳,获得10
8秒前
可舒发布了新的文献求助10
9秒前
miss完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
慕青应助哈哈一笑采纳,获得10
11秒前
11秒前
aa发布了新的文献求助10
11秒前
zkexuan完成签到,获得积分10
11秒前
烟花应助Kelly采纳,获得10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558928
求助须知:如何正确求助?哪些是违规求助? 3133623
关于积分的说明 9403366
捐赠科研通 2833721
什么是DOI,文献DOI怎么找? 1557654
邀请新用户注册赠送积分活动 727595
科研通“疑难数据库(出版商)”最低求助积分说明 716366