Fast inference of genetic recombination rates in biobank scale data

生命银行 生物 人口 推论 成对比较 连锁不平衡 计算机科学 数据挖掘 遗传学 单倍型 人工智能 人口学 社会学 基因型 基因
作者
Ardalan Naseri,William Yue,Shaojie Zhang,Degui Zhi
出处
期刊:Genome Research [Cold Spring Harbor Laboratory]
被引量:1
标识
DOI:10.1101/gr.277676.123
摘要

Although rates of recombination events across the genome (genetic maps) are fundamental to genetic research, the majority of current studies only use one standard map. There is evidence suggesting population differences in genetic maps, and thus estimating population-specific maps, are of interest. Although the recent availability of biobank-scale data offers such opportunities, current methods are not efficient at leveraging very large sample sizes. The most accurate methods are still linkage disequilibrium (LD)–based methods that are only tractable for a few hundred samples. In this work, we propose a fast and memory-efficient method for estimating genetic maps from population genotyping data. Our method, FastRecomb, leverages the efficient positional Burrows–Wheeler transform (PBWT) data structure for counting IBD segment boundaries as potential recombination events. We used PBWT blocks to avoid redundant counting of pairwise matches. Moreover, we used a panel-smoothing technique to reduce the noise from errors and recent mutations. Using simulation, we found that FastRecomb achieves state-of-the-art performance at 10-kb resolution, in terms of correlation coefficients between the estimated map and the ground truth. This is mainly because FastRecomb can effectively take advantage of large panels comprising more than hundreds of thousands of haplotypes. At the same time, other methods lack the efficiency to handle such data. We believe further refinement of FastRecomb would deliver more accurate genetic maps for the genetics community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
桐桐应助辛勤太阳采纳,获得10
1秒前
优美的小懒猪完成签到 ,获得积分10
1秒前
1秒前
2秒前
么么哒荼蘼酱完成签到,获得积分10
2秒前
浮游应助vgdog采纳,获得10
2秒前
2秒前
2秒前
ZS完成签到,获得积分10
3秒前
开心德天完成签到,获得积分10
3秒前
zw完成签到,获得积分10
3秒前
BareBear应助xu采纳,获得10
4秒前
ZWZWXY发布了新的文献求助30
4秒前
李健的小迷弟应助Zack采纳,获得10
4秒前
keyanniniz发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助文文采纳,获得10
5秒前
粥可温发布了新的文献求助10
5秒前
5秒前
5秒前
crisis发布了新的文献求助10
6秒前
6秒前
tangtang787发布了新的文献求助10
7秒前
王嘉鑫发布了新的文献求助10
7秒前
9秒前
花影移完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
感动傲南完成签到,获得积分10
10秒前
12秒前
12秒前
丘比特应助YHF2采纳,获得30
13秒前
13秒前
Mida应助淡定吃吃采纳,获得10
13秒前
yy111发布了新的文献求助10
13秒前
维奈克拉应助Julie采纳,获得20
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625501
求助须知:如何正确求助?哪些是违规求助? 4711310
关于积分的说明 14955098
捐赠科研通 4779405
什么是DOI,文献DOI怎么找? 2553744
邀请新用户注册赠送积分活动 1515680
关于科研通互助平台的介绍 1475870