Encoder–decoder-based CNN model for detection of object removal by image inpainting

修补 计算机科学 人工智能 计算机视觉 卷积神经网络 图像(数学) 编码器 对象(语法) 目标检测 模式识别(心理学) 操作系统
作者
Nitish Kumar,Toshanlal Meenpal
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:32 (04) 被引量:3
标识
DOI:10.1117/1.jei.32.4.042110
摘要

In multimedia forensics, several methods have been developed for the authentication of digital images. However, the detection and localization of removed objects from an image has always been a challenging problem. Image forgery, for the removal of objects, can be done in many ways. Among them, image inpainting performs object removal and fills the empty region with surrounding patches. The clues of inpainted region are visually imperceptible. Till date, limited work has been done for image inpainting detection. Hence, a convolutional neural network-based model for the detection of inpainted regions in an image is presented in this research. A hybrid encoder–decoder-based architecture is proposed, where a segment of DenseNet-121 architecture is adopted as an encoder. The primary goal of this architecture is to use spatial maps to explore the distinguishing features between inpainted and uninpainted regions. Inpainted image dataset created by using the exemplar-based image inpainting method is used to train and validate the proposed model. The performance of the proposed model is evaluated using various performance metrics. Experimental results show that the proposed model outperformed existing methods for a variety of inpainted images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助含泪的微笑采纳,获得10
刚刚
马佳凯发布了新的文献求助10
刚刚
2秒前
可靠松发布了新的文献求助10
2秒前
ym完成签到 ,获得积分10
2秒前
杳鸢应助落后的铭采纳,获得20
3秒前
3秒前
贺可乐发布了新的文献求助30
3秒前
曾经曼香完成签到,获得积分10
3秒前
叶绯完成签到,获得积分10
4秒前
Carhao应助dan1029采纳,获得10
5秒前
闲云野鹤发布了新的文献求助10
5秒前
Wangyn完成签到,获得积分10
5秒前
5秒前
袁裘完成签到,获得积分10
6秒前
七七关注了科研通微信公众号
6秒前
专一的绿茶完成签到,获得积分10
7秒前
ccc发布了新的文献求助10
7秒前
小二郎应助彩虹云朵采纳,获得10
7秒前
所所应助华hua采纳,获得10
7秒前
Charles完成签到,获得积分10
7秒前
8秒前
曾经曼香发布了新的文献求助10
9秒前
脑洞疼应助栗子采纳,获得10
9秒前
岱山完成签到,获得积分10
10秒前
LiuLiu完成签到,获得积分10
11秒前
zwj完成签到,获得积分10
11秒前
单纯雍发布了新的文献求助10
13秒前
14秒前
酪酪Alona发布了新的文献求助20
15秒前
ding应助清澄采纳,获得10
15秒前
凌壬靖完成签到 ,获得积分10
15秒前
16秒前
Wangyn发布了新的文献求助10
16秒前
bible发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
18秒前
19秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222804
求助须知:如何正确求助?哪些是违规求助? 2871564
关于积分的说明 8176070
捐赠科研通 2538543
什么是DOI,文献DOI怎么找? 1370632
科研通“疑难数据库(出版商)”最低求助积分说明 645818
邀请新用户注册赠送积分活动 619706