SoC estimation of lithium-ion batteries based on machine learning techniques: A filtered approach

电池(电) 荷电状态 离群值 计算机科学 鉴定(生物学) 航程(航空) 电压 锂离子电池 工程类 可靠性工程 人工智能 功率(物理) 电气工程 物理 植物 量子力学 生物 航空航天工程
作者
Mehmet Korkmaz
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108268-108268 被引量:16
标识
DOI:10.1016/j.est.2023.108268
摘要

Accurate state-of-charge (SoC) estimation is an essential requirement for many situations where Li-Ion batteries (LiBs) are used. This ensures an efficient battery management system (BMS), so the battery can be protected from excessive discharge, and its life span can be maximized. But when it comes to electrified vehicles (xEVs), the SoC estimation accuracy becomes a more critical and indispensable prerequisite. Because the safety of xEVs during driving and the remaining range, which is an indicator of how far the vehicle can go, are directly related to the accurate SoC. However, the complex electrochemical reactions in the battery and the dependence on environmental variables make SoC estimation a challenging task. Traditionally, this is tackled by establishing either electrochemical or electrical battery equivalent models. Both methods suffer from some limitations, such as parameter identification, complex calculations, and model mismatching due to the aging factor. On the other hand, data-driven methods have recently become a popular choice for SoC estimation since they enable building data-based models rather than chemical reactions or equivalent circuit calculations. The model is built based on battery parameters such as current, voltage, battery type, and then used for SoC estimation. However, many studies in the literature examine only a few methods for SoC estimation. Also, these data-driven black box models can lead to outlier data as they are not observers. Thus, the aims of this study are twofold: First, to make a comprehensive comparison based on most of the ML methods. Second, to utilize several filters for outlier removal and measure their effectiveness. For these purposes,18 ML algorithms were handled in three main groups, and SoC estimation results were analyzed. Additionally, five different filters were used to improve the SoC estimation of these methods, and their comparisons were realized. From the results, it is clear that Bagging and ExtraTree algorithms are substantially better than other ML methods for SoC estimation since their Interquartile Range (IQR) is smaller than 3%, performance indices are the lowest ones, and curve matches are the best. Also, Rloess is the best filter among the others, although they all achieved high performance in outlier removal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小兵完成签到,获得积分10
1秒前
3秒前
GSQ完成签到,获得积分10
5秒前
磊2024完成签到,获得积分10
6秒前
天天快乐应助糊涂的小伙采纳,获得10
7秒前
音玥发布了新的文献求助10
9秒前
wbb完成签到 ,获得积分10
9秒前
bonhiver完成签到 ,获得积分10
10秒前
寻桃阿玉完成签到 ,获得积分10
10秒前
宝宝烤面包完成签到 ,获得积分10
11秒前
wyhhh完成签到,获得积分10
11秒前
无情的问枫完成签到,获得积分10
11秒前
janice116688完成签到,获得积分10
14秒前
时尚雨兰完成签到,获得积分10
14秒前
失眠的诗蕊完成签到,获得积分0
15秒前
123456完成签到 ,获得积分10
17秒前
chenkj完成签到,获得积分10
17秒前
EricSai完成签到,获得积分10
17秒前
ikun完成签到,获得积分10
17秒前
17秒前
18秒前
糊涂的小伙完成签到,获得积分20
19秒前
居居侠完成签到 ,获得积分10
19秒前
长孙归尘完成签到 ,获得积分10
20秒前
Yimi刘博完成签到 ,获得积分10
20秒前
Keyuuu30完成签到,获得积分0
20秒前
21秒前
氧硫硒锑铋完成签到,获得积分10
24秒前
畅快枕头完成签到 ,获得积分10
24秒前
务实土豆完成签到 ,获得积分10
25秒前
沉静的乘风完成签到,获得积分10
25秒前
Faye完成签到 ,获得积分10
26秒前
执念完成签到 ,获得积分10
27秒前
凯凯搞科研完成签到,获得积分10
28秒前
cis2014完成签到,获得积分10
29秒前
kingfly2010完成签到,获得积分10
33秒前
懵懂的子骞完成签到 ,获得积分10
34秒前
昏睡的语山完成签到 ,获得积分10
34秒前
xueerbx完成签到,获得积分10
35秒前
赟yun完成签到,获得积分0
37秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434856
求助须知:如何正确求助?哪些是违规求助? 3032180
关于积分的说明 8944468
捐赠科研通 2720149
什么是DOI,文献DOI怎么找? 1492192
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685862