Machine-Learning-Enabled Framework in Engineering Plastics Discovery: A Case Study of Designing Polyimides with Desired Glass-Transition Temperature

材料科学 玻璃化转变 纳米技术 机械工程 复合材料 聚合物 工程物理 工程类
作者
Songyang Zhang,Xiaojie He,Xuejian Xia,Peng Xiao,Qi Wu,Feng Zheng,Qinghua Lu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (31): 37893-37902 被引量:28
标识
DOI:10.1021/acsami.3c05376
摘要

Great and continuous efforts have been made to discover high-performance engineering plastics with specific properties to replace traditional engineering materials in many fields. The utilization of machine learning (ML) has brought more opportunities for the discovery of high-performing engineering plastics. However, hindered by either the relatively small database or a lack of accurate structure descriptors with clear physical and chemical meanings relating to polymer properties, the current ML studies show some flaws in the accuracy and efficiency in polymer development. Herein, we collected a dataset of 878 polyimides (PI), one of the best engineering plastics, with experimentally measured glass-transition temperature (Tg) values, and developed a rapid and accurate ML approach to design PI candidates with the desired Tg value. After the conversion from PI structures into "mechanically identifiable" SMILES (Simplified molecular input line entry system) language, the eight most critical descriptors were ultimately obtained by multiple analysis methods. The physiochemical meaning of the key descriptors was further analyzed carefully to translate the implicit "machine language" to chemical knowledge. The artificial neural network (ANN)-based model gave the most accurate results with a root-mean-square error of ∼11 K among the studied ML methods. More importantly, three potential PI candidates with desired Tg (DPIs) were designed according to the chemical insight of the key descriptors, which were then verified by experiments. The experimental and predicted Tg values of DPIs have an acceptable average deviation of ca. 3.66%. This accuracy has reached the level of the traditional molecular simulation, but the time consumption and hold-up computing resource are tremendously reduced. Furthermore, the current ML approach could offer a scalable and adaptable framework in future engineer plastics innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低千雁完成签到,获得积分10
1秒前
donburik发布了新的文献求助10
1秒前
冯FF完成签到,获得积分10
1秒前
霍山柳发布了新的文献求助10
1秒前
小蘑菇应助陈琳采纳,获得10
1秒前
zzz做学术发布了新的文献求助10
2秒前
Swagger完成签到,获得积分10
2秒前
彭婉怡yyyy完成签到,获得积分10
2秒前
2秒前
希望天下0贩的0应助fx采纳,获得10
2秒前
在水一方应助热情的黑猫采纳,获得10
3秒前
芭乐乐发布了新的文献求助10
3秒前
SY完成签到,获得积分20
4秒前
4秒前
4秒前
英俊的铭应助任罗川采纳,获得10
4秒前
Naixichaohaohe完成签到,获得积分10
4秒前
健壮荠完成签到,获得积分10
4秒前
上官若男应助hearz采纳,获得10
4秒前
5秒前
5秒前
5秒前
千流完成签到,获得积分10
5秒前
从容的子轩完成签到,获得积分10
5秒前
6秒前
小仙完成签到,获得积分10
6秒前
好哥哥完成签到,获得积分0
6秒前
争取发二区完成签到,获得积分10
6秒前
hly发布了新的文献求助10
6秒前
DenM7发布了新的文献求助10
7秒前
7秒前
piao完成签到,获得积分10
7秒前
apex完成签到 ,获得积分10
7秒前
下载文章即可完成签到,获得积分10
8秒前
8秒前
9秒前
skyscraper完成签到,获得积分10
9秒前
JamesPei应助从容的子轩采纳,获得10
9秒前
Francis完成签到,获得积分10
9秒前
健康的宛菡完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516957
求助须知:如何正确求助?哪些是违规求助? 4609934
关于积分的说明 14519101
捐赠科研通 4546890
什么是DOI,文献DOI怎么找? 2491407
邀请新用户注册赠送积分活动 1473077
关于科研通互助平台的介绍 1444956