亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-Learning-Enabled Framework in Engineering Plastics Discovery: A Case Study of Designing Polyimides with Desired Glass-Transition Temperature

材料科学 玻璃化转变 纳米技术 机械工程 复合材料 聚合物 工程物理 工程类
作者
Songyang Zhang,Xiaojie He,Xuejian Xia,Peng Xiao,Qi Wu,Feng Zheng,Qinghua Lu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (31): 37893-37902 被引量:28
标识
DOI:10.1021/acsami.3c05376
摘要

Great and continuous efforts have been made to discover high-performance engineering plastics with specific properties to replace traditional engineering materials in many fields. The utilization of machine learning (ML) has brought more opportunities for the discovery of high-performing engineering plastics. However, hindered by either the relatively small database or a lack of accurate structure descriptors with clear physical and chemical meanings relating to polymer properties, the current ML studies show some flaws in the accuracy and efficiency in polymer development. Herein, we collected a dataset of 878 polyimides (PI), one of the best engineering plastics, with experimentally measured glass-transition temperature (Tg) values, and developed a rapid and accurate ML approach to design PI candidates with the desired Tg value. After the conversion from PI structures into "mechanically identifiable" SMILES (Simplified molecular input line entry system) language, the eight most critical descriptors were ultimately obtained by multiple analysis methods. The physiochemical meaning of the key descriptors was further analyzed carefully to translate the implicit "machine language" to chemical knowledge. The artificial neural network (ANN)-based model gave the most accurate results with a root-mean-square error of ∼11 K among the studied ML methods. More importantly, three potential PI candidates with desired Tg (DPIs) were designed according to the chemical insight of the key descriptors, which were then verified by experiments. The experimental and predicted Tg values of DPIs have an acceptable average deviation of ca. 3.66%. This accuracy has reached the level of the traditional molecular simulation, but the time consumption and hold-up computing resource are tremendously reduced. Furthermore, the current ML approach could offer a scalable and adaptable framework in future engineer plastics innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助时尚的萝采纳,获得10
1秒前
9秒前
wingmay完成签到,获得积分20
14秒前
酷酷玉兰完成签到 ,获得积分10
20秒前
22秒前
27秒前
大模型应助烛夜黎采纳,获得10
30秒前
Criminology34应助Iris采纳,获得10
32秒前
闲鱼耶鹤完成签到 ,获得积分10
35秒前
36秒前
40秒前
烛夜黎发布了新的文献求助10
41秒前
拉长的从灵完成签到,获得积分10
41秒前
顺熙发布了新的文献求助10
45秒前
等风来LYY完成签到,获得积分10
51秒前
顺熙完成签到,获得积分10
53秒前
58秒前
1分钟前
1分钟前
1分钟前
yf完成签到,获得积分10
1分钟前
sulin完成签到 ,获得积分10
1分钟前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
Nature应助激昂的吐司采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得30
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
cherish完成签到,获得积分10
2分钟前
silence完成签到 ,获得积分10
2分钟前
2分钟前
幽默孤菱发布了新的文献求助10
2分钟前
2分钟前
善学以致用应助ceeray23采纳,获得20
2分钟前
热心一江关注了科研通微信公众号
2分钟前
2分钟前
青山完成签到 ,获得积分10
3分钟前
d00007发布了新的文献求助10
3分钟前
3分钟前
二狗完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664182
求助须知:如何正确求助?哪些是违规求助? 4858397
关于积分的说明 15107254
捐赠科研通 4822630
什么是DOI,文献DOI怎么找? 2581600
邀请新用户注册赠送积分活动 1535799
关于科研通互助平台的介绍 1494030