Machine-Learning-Enabled Framework in Engineering Plastics Discovery: A Case Study of Designing Polyimides with Desired Glass-Transition Temperature

材料科学 玻璃化转变 纳米技术 机械工程 复合材料 聚合物 工程物理 工程类
作者
Songyang Zhang,Xiaojie He,Xuejian Xia,Peng Xiao,Qi Wu,Feng Zheng,Qinghua Lu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (31): 37893-37902 被引量:28
标识
DOI:10.1021/acsami.3c05376
摘要

Great and continuous efforts have been made to discover high-performance engineering plastics with specific properties to replace traditional engineering materials in many fields. The utilization of machine learning (ML) has brought more opportunities for the discovery of high-performing engineering plastics. However, hindered by either the relatively small database or a lack of accurate structure descriptors with clear physical and chemical meanings relating to polymer properties, the current ML studies show some flaws in the accuracy and efficiency in polymer development. Herein, we collected a dataset of 878 polyimides (PI), one of the best engineering plastics, with experimentally measured glass-transition temperature (Tg) values, and developed a rapid and accurate ML approach to design PI candidates with the desired Tg value. After the conversion from PI structures into "mechanically identifiable" SMILES (Simplified molecular input line entry system) language, the eight most critical descriptors were ultimately obtained by multiple analysis methods. The physiochemical meaning of the key descriptors was further analyzed carefully to translate the implicit "machine language" to chemical knowledge. The artificial neural network (ANN)-based model gave the most accurate results with a root-mean-square error of ∼11 K among the studied ML methods. More importantly, three potential PI candidates with desired Tg (DPIs) were designed according to the chemical insight of the key descriptors, which were then verified by experiments. The experimental and predicted Tg values of DPIs have an acceptable average deviation of ca. 3.66%. This accuracy has reached the level of the traditional molecular simulation, but the time consumption and hold-up computing resource are tremendously reduced. Furthermore, the current ML approach could offer a scalable and adaptable framework in future engineer plastics innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狄语蕊完成签到,获得积分10
刚刚
田乐天完成签到 ,获得积分10
刚刚
guajiguaji完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
Janice完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
Oops完成签到,获得积分10
2秒前
无宇伦比完成签到,获得积分10
2秒前
ding完成签到,获得积分10
3秒前
小二郎应助会举重的树采纳,获得10
4秒前
嵇南露完成签到,获得积分10
5秒前
fyjlfy完成签到 ,获得积分10
5秒前
科研通AI2S应助guajiguaji采纳,获得10
5秒前
小胡发布了新的文献求助10
5秒前
mzm完成签到,获得积分10
6秒前
zain完成签到 ,获得积分10
6秒前
Paris完成签到,获得积分10
7秒前
7秒前
彭于晏应助收手吧大哥采纳,获得10
7秒前
科研通AI2S应助dmoney采纳,获得10
7秒前
活力顿阿雪完成签到,获得积分10
9秒前
9秒前
畅快的煜祺完成签到,获得积分10
11秒前
Miya_han完成签到,获得积分10
13秒前
简单刺猬完成签到,获得积分10
13秒前
xiaxia42完成签到 ,获得积分10
14秒前
魔幻的新梅完成签到,获得积分10
14秒前
成就紫真发布了新的文献求助10
14秒前
ss毒是发布了新的文献求助10
14秒前
charlesliu116完成签到,获得积分20
14秒前
lili完成签到 ,获得积分10
15秒前
15秒前
稳重的蛟凤完成签到,获得积分10
15秒前
从容向真完成签到,获得积分10
16秒前
烤鸭完成签到 ,获得积分10
16秒前
16秒前
浊轶完成签到 ,获得积分10
17秒前
科研通AI2S应助同瓜不同命采纳,获得10
17秒前
年轻枕头完成签到,获得积分10
17秒前
妮妮完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765152
求助须知:如何正确求助?哪些是违规求助? 5559177
关于积分的说明 15407489
捐赠科研通 4900018
什么是DOI,文献DOI怎么找? 2636146
邀请新用户注册赠送积分活动 1584366
关于科研通互助平台的介绍 1539609