亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-Learning-Enabled Framework in Engineering Plastics Discovery: A Case Study of Designing Polyimides with Desired Glass-Transition Temperature

材料科学 玻璃化转变 纳米技术 机械工程 复合材料 聚合物 工程物理 工程类
作者
Songyang Zhang,Xiaojie He,Xuejian Xia,Peng Xiao,Qi Wu,Feng Zheng,Qinghua Lu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (31): 37893-37902 被引量:5
标识
DOI:10.1021/acsami.3c05376
摘要

Great and continuous efforts have been made to discover high-performance engineering plastics with specific properties to replace traditional engineering materials in many fields. The utilization of machine learning (ML) has brought more opportunities for the discovery of high-performing engineering plastics. However, hindered by either the relatively small database or a lack of accurate structure descriptors with clear physical and chemical meanings relating to polymer properties, the current ML studies show some flaws in the accuracy and efficiency in polymer development. Herein, we collected a dataset of 878 polyimides (PI), one of the best engineering plastics, with experimentally measured glass-transition temperature (Tg) values, and developed a rapid and accurate ML approach to design PI candidates with the desired Tg value. After the conversion from PI structures into "mechanically identifiable" SMILES (Simplified molecular input line entry system) language, the eight most critical descriptors were ultimately obtained by multiple analysis methods. The physiochemical meaning of the key descriptors was further analyzed carefully to translate the implicit "machine language" to chemical knowledge. The artificial neural network (ANN)-based model gave the most accurate results with a root-mean-square error of ∼11 K among the studied ML methods. More importantly, three potential PI candidates with desired Tg (DPIs) were designed according to the chemical insight of the key descriptors, which were then verified by experiments. The experimental and predicted Tg values of DPIs have an acceptable average deviation of ca. 3.66%. This accuracy has reached the level of the traditional molecular simulation, but the time consumption and hold-up computing resource are tremendously reduced. Furthermore, the current ML approach could offer a scalable and adaptable framework in future engineer plastics innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
人文完成签到 ,获得积分10
5秒前
阿嘉完成签到 ,获得积分10
16秒前
Swear完成签到 ,获得积分10
20秒前
欢呼冬瓜完成签到 ,获得积分10
36秒前
漠漠完成签到 ,获得积分10
40秒前
1分钟前
arsenal完成签到 ,获得积分10
1分钟前
独特稀发布了新的文献求助10
1分钟前
1分钟前
1分钟前
qian72133完成签到,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得20
1分钟前
1分钟前
子卿完成签到,获得积分0
1分钟前
2分钟前
2分钟前
2分钟前
不辣的完成签到 ,获得积分10
2分钟前
充电宝应助小南子采纳,获得10
2分钟前
仙草完成签到,获得积分10
2分钟前
2分钟前
尔信完成签到 ,获得积分10
2分钟前
2分钟前
小南子发布了新的文献求助10
2分钟前
计划完成签到,获得积分10
2分钟前
2分钟前
小鱼完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
plastic完成签到,获得积分10
3分钟前
3分钟前
dolphin完成签到 ,获得积分0
3分钟前
3分钟前
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
王志鹏完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 800
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211060
求助须知:如何正确求助?哪些是违规求助? 2860096
关于积分的说明 8122656
捐赠科研通 2525813
什么是DOI,文献DOI怎么找? 1359596
科研通“疑难数据库(出版商)”最低求助积分说明 643012
邀请新用户注册赠送积分活动 614987