Machine-Learning-Enabled Framework in Engineering Plastics Discovery: A Case Study of Designing Polyimides with Desired Glass-Transition Temperature

材料科学 玻璃化转变 纳米技术 机械工程 复合材料 聚合物 工程物理 工程类
作者
Songyang Zhang,Xiaojie He,Xuejian Xia,Peng Xiao,Qi Wu,Feng Zheng,Qinghua Lu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (31): 37893-37902 被引量:28
标识
DOI:10.1021/acsami.3c05376
摘要

Great and continuous efforts have been made to discover high-performance engineering plastics with specific properties to replace traditional engineering materials in many fields. The utilization of machine learning (ML) has brought more opportunities for the discovery of high-performing engineering plastics. However, hindered by either the relatively small database or a lack of accurate structure descriptors with clear physical and chemical meanings relating to polymer properties, the current ML studies show some flaws in the accuracy and efficiency in polymer development. Herein, we collected a dataset of 878 polyimides (PI), one of the best engineering plastics, with experimentally measured glass-transition temperature (Tg) values, and developed a rapid and accurate ML approach to design PI candidates with the desired Tg value. After the conversion from PI structures into "mechanically identifiable" SMILES (Simplified molecular input line entry system) language, the eight most critical descriptors were ultimately obtained by multiple analysis methods. The physiochemical meaning of the key descriptors was further analyzed carefully to translate the implicit "machine language" to chemical knowledge. The artificial neural network (ANN)-based model gave the most accurate results with a root-mean-square error of ∼11 K among the studied ML methods. More importantly, three potential PI candidates with desired Tg (DPIs) were designed according to the chemical insight of the key descriptors, which were then verified by experiments. The experimental and predicted Tg values of DPIs have an acceptable average deviation of ca. 3.66%. This accuracy has reached the level of the traditional molecular simulation, but the time consumption and hold-up computing resource are tremendously reduced. Furthermore, the current ML approach could offer a scalable and adaptable framework in future engineer plastics innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骑猪看月完成签到,获得积分10
刚刚
可爱的函函应助KKIII采纳,获得30
刚刚
1秒前
超级的迎彤完成签到 ,获得积分10
1秒前
佛系发布了新的文献求助10
1秒前
刘卓岩发布了新的文献求助20
3秒前
闻尔完成签到,获得积分10
3秒前
3秒前
CooLIT发布了新的文献求助10
4秒前
刘霞完成签到,获得积分10
4秒前
Mr祥完成签到,获得积分10
4秒前
胖虎的老张完成签到,获得积分10
4秒前
米米米完成签到,获得积分10
4秒前
孤独问旋完成签到,获得积分10
5秒前
大个应助豌豆射手采纳,获得10
5秒前
YING完成签到,获得积分10
6秒前
小杭76应助优雅的砖头采纳,获得10
6秒前
机智跳跳糖完成签到,获得积分10
6秒前
充电宝应助果称采纳,获得10
6秒前
眼睛大的可乐完成签到,获得积分10
7秒前
ppppp完成签到,获得积分20
7秒前
7秒前
lalala应助QIQI采纳,获得10
7秒前
清爽猕猴桃完成签到,获得积分20
8秒前
含糊的衬衫完成签到 ,获得积分20
8秒前
爱哭的小女孩完成签到,获得积分10
8秒前
8秒前
梦槐完成签到,获得积分10
9秒前
吕君完成签到,获得积分10
9秒前
anan应助竹林风箫采纳,获得10
10秒前
10秒前
依然小爽完成签到,获得积分10
10秒前
11秒前
Cy完成签到,获得积分10
11秒前
乐观的海发布了新的文献求助10
12秒前
NexusExplorer应助勤劳寒烟采纳,获得10
13秒前
13秒前
YUMMY发布了新的文献求助10
13秒前
14秒前
nancylan应助CooLIT采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286904
求助须知:如何正确求助?哪些是违规求助? 4439441
关于积分的说明 13821830
捐赠科研通 4321463
什么是DOI,文献DOI怎么找? 2371969
邀请新用户注册赠送积分活动 1367463
关于科研通互助平台的介绍 1330923