Machine-Learning-Enabled Framework in Engineering Plastics Discovery: A Case Study of Designing Polyimides with Desired Glass-Transition Temperature

材料科学 玻璃化转变 纳米技术 机械工程 复合材料 聚合物 工程物理 工程类
作者
Songyang Zhang,Xiaojie He,Xuejian Xia,Peng Xiao,Qi Wu,Feng Zheng,Qinghua Lu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (31): 37893-37902 被引量:12
标识
DOI:10.1021/acsami.3c05376
摘要

Great and continuous efforts have been made to discover high-performance engineering plastics with specific properties to replace traditional engineering materials in many fields. The utilization of machine learning (ML) has brought more opportunities for the discovery of high-performing engineering plastics. However, hindered by either the relatively small database or a lack of accurate structure descriptors with clear physical and chemical meanings relating to polymer properties, the current ML studies show some flaws in the accuracy and efficiency in polymer development. Herein, we collected a dataset of 878 polyimides (PI), one of the best engineering plastics, with experimentally measured glass-transition temperature (Tg) values, and developed a rapid and accurate ML approach to design PI candidates with the desired Tg value. After the conversion from PI structures into "mechanically identifiable" SMILES (Simplified molecular input line entry system) language, the eight most critical descriptors were ultimately obtained by multiple analysis methods. The physiochemical meaning of the key descriptors was further analyzed carefully to translate the implicit "machine language" to chemical knowledge. The artificial neural network (ANN)-based model gave the most accurate results with a root-mean-square error of ∼11 K among the studied ML methods. More importantly, three potential PI candidates with desired Tg (DPIs) were designed according to the chemical insight of the key descriptors, which were then verified by experiments. The experimental and predicted Tg values of DPIs have an acceptable average deviation of ca. 3.66%. This accuracy has reached the level of the traditional molecular simulation, but the time consumption and hold-up computing resource are tremendously reduced. Furthermore, the current ML approach could offer a scalable and adaptable framework in future engineer plastics innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WH发布了新的文献求助10
1秒前
1秒前
1秒前
爆米花应助龙仔采纳,获得10
2秒前
3秒前
xxyy发布了新的文献求助10
3秒前
Hzz完成签到,获得积分10
3秒前
yx发布了新的文献求助10
4秒前
5秒前
7秒前
修身养性发布了新的文献求助10
7秒前
7秒前
权翼完成签到,获得积分10
7秒前
10秒前
stream关注了科研通微信公众号
10秒前
木light发布了新的文献求助10
11秒前
李健应助残梦蝶采纳,获得10
11秒前
R11发布了新的文献求助10
12秒前
Orange应助WH采纳,获得10
12秒前
小蘑菇应助傅里叶变浣采纳,获得10
12秒前
tt发布了新的文献求助10
12秒前
YifanWang应助孔雪采纳,获得10
13秒前
纸飞机的梦完成签到,获得积分10
13秒前
大胖完成签到,获得积分10
14秒前
桐桐应助ee采纳,获得10
14秒前
zhangyue7777发布了新的文献求助10
14秒前
zdw发布了新的文献求助20
16秒前
TTLi应助R11采纳,获得10
16秒前
slayer完成签到 ,获得积分10
16秒前
16秒前
JamesPei应助tt采纳,获得10
17秒前
17秒前
fu完成签到,获得积分10
19秒前
20秒前
Marco_hxkq发布了新的文献求助10
20秒前
过时的觅翠完成签到,获得积分10
21秒前
21秒前
WH完成签到,获得积分10
22秒前
6260完成签到,获得积分10
24秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089