自动汇总
计算机科学
变压器
自然语言处理
人工智能
试验装置
深度学习
情报检索
语言模型
训练集
工程类
电压
电气工程
作者
Abdulkader Helwan,Danielle Azar,Dilber Uzun Ozsahin
标识
DOI:10.1109/aset56582.2023.10180671
摘要
Summarization of medical reports in order to make them accessible to the large public is an important task that can highly benefit from the recent emergence of the deep learning and large language models (LLM). In this work, we propose a fine-tuned Text-to-Text Transformer (T5) to summarize such reports. We train and test our model on the publicly available Indiana Dataset. We evaluate it using the ROUGE set of metrics. The obtained results are promising.
科研通智能强力驱动
Strongly Powered by AbleSci AI