清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning Using Presentation CT Perfusion Imaging for Predicting Clinical Outcomes in Patients With Aneurysmal Subarachnoid Hemorrhage

医学 蛛网膜下腔出血 介绍(产科) 动脉瘤 灌注扫描 放射科 灌注 外科
作者
Pengzhan Yin,Jiaqi Wang,Chao Zhang,Jinlong Yuan,Mingquan Ye,Yunfeng Zhou
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:221 (6): 817-835 被引量:3
标识
DOI:10.2214/ajr.23.29579
摘要

BACKGROUND. Prediction of outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH) is challenging using current clinical predictors. OBJECTIVE. The purpose of our study was to evaluate the utility of machine learning (ML) models incorporating presentation clinical and CT perfusion imaging (CTP) data in predicting delayed cerebral ischemia (DCI) and poor functional outcome in patients with aSAH. METHODS. This study entailed retrospective analysis of data from 242 patients (mean age, 60.9 ± 11.8 [SD] years; 165 women, 77 men) with aSAH who, as part of a prospective trial, underwent CTP followed by standardized evaluation for DCI during initial hospitalization and poor 3-month functional outcome (i.e., modified Rankin scale score ≥ 4). Patients were randomly divided into training (n = 194) and test (n = 48) sets. Five ML models (k-nearest neighbor [KNN], logistic regression [LR], support vector machine [SVM], random forest [RF], and category boosting [CatBoost]) were developed for predicting outcomes using presentation clinical and CTP data. The least absolute shrinkage and selection operator method was used for feature selection. Ten-fold cross-validation was performed in the training set. Traditional clinical models were developed using stepwise LR analysis of clinical, but not CTP, data. RESULTS. Qualitative CTP analysis was identified as the most impactful feature for both outcomes. In the test set, the traditional clinical model, KNN, LR, SVM, RF, and CatBoost showed AUC for predicting DCI of 0.771, 0.812, 0.824, 0.908, 0.930, and 0.949, respectively, and AUC for predicting poor 3-month functional outcome of 0.863, 0.858, 0.879, 0.908, 0.926, and 0.958. CatBoost was selected as the optimal model. In the test set, AUC was higher for CatBoost than for the traditional clinical model for predicting DCI (p = .004) and poor 3-month functional outcome (p = .04). In the test set, sensitivity and specificity for predicting DCI were 92.3% and 60.0% for the traditional clinical model versus 92.3% and 85.7% for CatBoost, and sensitivity and specificity for predicting poor 3-month functional outcome were 100.0% and 65.8% for the traditional clinical model versus 90.0% and 94.7% for CatBoost. A web-based prediction tool based on CatBoost was created. CONCLUSION. ML models incorporating presentation clinical and CTP data outperformed traditional clinical models in predicting DCI and poor 3-month functional outcome. CLINICAL IMPACT. ML models may help guide early management of patients with aSAH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
坚强的广山完成签到,获得积分0
20秒前
46秒前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
Eric800824完成签到 ,获得积分10
2分钟前
2分钟前
zsmj23完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
哈哈完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
肆肆完成签到,获得积分10
7分钟前
7分钟前
锋feng完成签到 ,获得积分10
8分钟前
你博哥完成签到 ,获得积分10
8分钟前
10分钟前
陶沛发布了新的文献求助10
10分钟前
大喵完成签到,获得积分10
11分钟前
爱静静完成签到,获得积分0
11分钟前
Jenny完成签到 ,获得积分10
12分钟前
书文混四方完成签到 ,获得积分10
13分钟前
13分钟前
隐形问萍完成签到,获得积分10
14分钟前
隐形问萍发布了新的文献求助10
14分钟前
FSYHantis完成签到,获得积分10
15分钟前
陈元元K完成签到,获得积分10
17分钟前
wangye完成签到 ,获得积分10
17分钟前
名侦探柯基完成签到 ,获得积分10
17分钟前
Jack80应助科研通管家采纳,获得50
18分钟前
cy0824完成签到 ,获得积分10
18分钟前
个性松完成签到 ,获得积分10
19分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899719
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142