Machine Learning Using Presentation CT Perfusion Imaging for Predicting Clinical Outcomes in Patients With Aneurysmal Subarachnoid Hemorrhage

医学 蛛网膜下腔出血 介绍(产科) 动脉瘤 灌注扫描 放射科 灌注 外科
作者
Pengzhan Yin,Jiaqi Wang,Chao Zhang,Jinlong Yuan,Mingquan Ye,Yunfeng Zhou
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:221 (6): 817-835 被引量:12
标识
DOI:10.2214/ajr.23.29579
摘要

BACKGROUND. Prediction of outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH) is challenging using current clinical predictors. OBJECTIVE. The purpose of our study was to evaluate the utility of machine learning (ML) models incorporating presentation clinical and CT perfusion imaging (CTP) data in predicting delayed cerebral ischemia (DCI) and poor functional outcome in patients with aSAH. METHODS. This study entailed retrospective analysis of data from 242 patients (mean age, 60.9 ± 11.8 [SD] years; 165 women, 77 men) with aSAH who, as part of a prospective trial, underwent CTP followed by standardized evaluation for DCI during initial hospitalization and poor 3-month functional outcome (i.e., modified Rankin scale score ≥ 4). Patients were randomly divided into training (n = 194) and test (n = 48) sets. Five ML models (k-nearest neighbor [KNN], logistic regression [LR], support vector machine [SVM], random forest [RF], and category boosting [CatBoost]) were developed for predicting outcomes using presentation clinical and CTP data. The least absolute shrinkage and selection operator method was used for feature selection. Ten-fold cross-validation was performed in the training set. Traditional clinical models were developed using stepwise LR analysis of clinical, but not CTP, data. RESULTS. Qualitative CTP analysis was identified as the most impactful feature for both outcomes. In the test set, the traditional clinical model, KNN, LR, SVM, RF, and CatBoost showed AUC for predicting DCI of 0.771, 0.812, 0.824, 0.908, 0.930, and 0.949, respectively, and AUC for predicting poor 3-month functional outcome of 0.863, 0.858, 0.879, 0.908, 0.926, and 0.958. CatBoost was selected as the optimal model. In the test set, AUC was higher for CatBoost than for the traditional clinical model for predicting DCI (p = .004) and poor 3-month functional outcome (p = .04). In the test set, sensitivity and specificity for predicting DCI were 92.3% and 60.0% for the traditional clinical model versus 92.3% and 85.7% for CatBoost, and sensitivity and specificity for predicting poor 3-month functional outcome were 100.0% and 65.8% for the traditional clinical model versus 90.0% and 94.7% for CatBoost. A web-based prediction tool based on CatBoost was created. CONCLUSION. ML models incorporating presentation clinical and CTP data outperformed traditional clinical models in predicting DCI and poor 3-month functional outcome. CLINICAL IMPACT. ML models may help guide early management of patients with aSAH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧霄发布了新的文献求助10
刚刚
NXFJ发布了新的文献求助10
1秒前
xx完成签到,获得积分10
2秒前
结实星星完成签到,获得积分10
2秒前
lq发布了新的文献求助10
2秒前
阳阳完成签到 ,获得积分10
2秒前
3秒前
3秒前
黄世英子发布了新的文献求助30
4秒前
纸农发布了新的文献求助10
4秒前
4秒前
5秒前
leederay完成签到,获得积分10
5秒前
Akim应助兴奋天蓉采纳,获得10
6秒前
herdwind完成签到,获得积分10
6秒前
6秒前
6秒前
jmy1995发布了新的文献求助10
6秒前
充电宝应助褪色采纳,获得10
6秒前
7秒前
缓慢的孤兰完成签到,获得积分10
7秒前
7秒前
7秒前
mm发布了新的文献求助10
8秒前
典雅芫发布了新的文献求助10
8秒前
9秒前
淡定绮波完成签到,获得积分10
10秒前
10秒前
skyleon完成签到,获得积分10
10秒前
松间明月发布了新的文献求助10
11秒前
11秒前
大小罐子发布了新的文献求助10
13秒前
whysoserious完成签到,获得积分10
13秒前
852应助诚心谷南采纳,获得10
13秒前
吴文斌完成签到 ,获得积分10
14秒前
14秒前
14秒前
nn发布了新的文献求助10
14秒前
张卓情发布了新的文献求助10
16秒前
啦11发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547929
求助须知:如何正确求助?哪些是违规求助? 4633375
关于积分的说明 14630983
捐赠科研通 4574989
什么是DOI,文献DOI怎么找? 2508795
邀请新用户注册赠送积分活动 1485047
关于科研通互助平台的介绍 1456075