Machine Learning Using Presentation CT Perfusion Imaging for Predicting Clinical Outcomes in Patients With Aneurysmal Subarachnoid Hemorrhage

医学 蛛网膜下腔出血 介绍(产科) 动脉瘤 灌注扫描 放射科 灌注 外科
作者
Pengzhan Yin,Jiaqi Wang,Chao Zhang,Jinlong Yuan,Mingquan Ye,Yunfeng Zhou
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:221 (6): 817-835 被引量:3
标识
DOI:10.2214/ajr.23.29579
摘要

BACKGROUND. Prediction of outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH) is challenging using current clinical predictors. OBJECTIVE. The purpose of our study was to evaluate the utility of machine learning (ML) models incorporating presentation clinical and CT perfusion imaging (CTP) data in predicting delayed cerebral ischemia (DCI) and poor functional outcome in patients with aSAH. METHODS. This study entailed retrospective analysis of data from 242 patients (mean age, 60.9 ± 11.8 [SD] years; 165 women, 77 men) with aSAH who, as part of a prospective trial, underwent CTP followed by standardized evaluation for DCI during initial hospitalization and poor 3-month functional outcome (i.e., modified Rankin scale score ≥ 4). Patients were randomly divided into training (n = 194) and test (n = 48) sets. Five ML models (k-nearest neighbor [KNN], logistic regression [LR], support vector machine [SVM], random forest [RF], and category boosting [CatBoost]) were developed for predicting outcomes using presentation clinical and CTP data. The least absolute shrinkage and selection operator method was used for feature selection. Ten-fold cross-validation was performed in the training set. Traditional clinical models were developed using stepwise LR analysis of clinical, but not CTP, data. RESULTS. Qualitative CTP analysis was identified as the most impactful feature for both outcomes. In the test set, the traditional clinical model, KNN, LR, SVM, RF, and CatBoost showed AUC for predicting DCI of 0.771, 0.812, 0.824, 0.908, 0.930, and 0.949, respectively, and AUC for predicting poor 3-month functional outcome of 0.863, 0.858, 0.879, 0.908, 0.926, and 0.958. CatBoost was selected as the optimal model. In the test set, AUC was higher for CatBoost than for the traditional clinical model for predicting DCI (p = .004) and poor 3-month functional outcome (p = .04). In the test set, sensitivity and specificity for predicting DCI were 92.3% and 60.0% for the traditional clinical model versus 92.3% and 85.7% for CatBoost, and sensitivity and specificity for predicting poor 3-month functional outcome were 100.0% and 65.8% for the traditional clinical model versus 90.0% and 94.7% for CatBoost. A web-based prediction tool based on CatBoost was created. CONCLUSION. ML models incorporating presentation clinical and CTP data outperformed traditional clinical models in predicting DCI and poor 3-month functional outcome. CLINICAL IMPACT. ML models may help guide early management of patients with aSAH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助gishisei采纳,获得10
刚刚
冷茂林完成签到,获得积分10
刚刚
研友_LN25rL完成签到,获得积分10
1秒前
东阳发布了新的文献求助10
1秒前
1秒前
安年完成签到 ,获得积分10
1秒前
穆斯塔法完成签到,获得积分20
2秒前
xmy完成签到,获得积分10
2秒前
2秒前
独指蜗牛完成签到 ,获得积分10
3秒前
tctgvfxdbhb完成签到,获得积分10
3秒前
5秒前
5秒前
美好乐松应助zbaaa采纳,获得10
5秒前
关琦完成签到,获得积分10
5秒前
Vicky发布了新的文献求助10
5秒前
酷波er应助橙子橙子橙子采纳,获得10
5秒前
Xiaozhe完成签到,获得积分10
7秒前
Slu发布了新的文献求助10
7秒前
热心小松鼠完成签到,获得积分10
7秒前
orixero应助自觉石头采纳,获得10
7秒前
Huang_being发布了新的文献求助20
8秒前
坐等时光看轻自己完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
沈尔云完成签到,获得积分10
9秒前
zqqq完成签到,获得积分10
9秒前
机智羞花发布了新的文献求助30
10秒前
LD完成签到 ,获得积分10
10秒前
8hua完成签到,获得积分10
11秒前
星禾吾完成签到,获得积分10
12秒前
木子完成签到,获得积分10
12秒前
CodeCraft应助温暖雨采纳,获得10
12秒前
刚刚好完成签到,获得积分10
12秒前
迟大猫应助辛勤的夏彤采纳,获得30
12秒前
huichuanyin完成签到 ,获得积分10
12秒前
azaa完成签到,获得积分10
13秒前
13秒前
共享精神应助五條小羊采纳,获得10
13秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661640
求助须知:如何正确求助?哪些是违规求助? 3222598
关于积分的说明 9746930
捐赠科研通 2932253
什么是DOI,文献DOI怎么找? 1605569
邀请新用户注册赠送积分活动 757979
科研通“疑难数据库(出版商)”最低求助积分说明 734584