3D-printed stretchable hybrid piezoelectric-triboelectric nanogenerator for smart tire: Onboard real-time tread wear monitoring system

摩擦电效应 材料科学 纳米发生器 聚二甲基硅氧烷 能量收集 可伸缩电子设备 压电 纳米技术 光电子学 数码产品 功率(物理) 电气工程 复合材料 量子力学 物理 工程类
作者
Kamal Kumar Meena,Injamamul Arief,Anik Kumar Ghosh,Hans Liebscher,Sakrit Hait,Jürgen Nagel,Gert Heinrich,Andreas Fery,Amit Das
出处
期刊:Nano Energy [Elsevier]
卷期号:115: 108707-108707 被引量:28
标识
DOI:10.1016/j.nanoen.2023.108707
摘要

An affordable yet highly promising device, friction-based triboelectric nanogenerator (TENG) has attracted tremendous attention for harvesting energy from ambient mechanical forces and converting to scalable electrical power. However, the output power from TENG often appears insufficient to run self-powered electronics for the long term. While most research on high-output hybrid TENGs focused on ferroelectric particle-based polymer composites, we propose a coupled 3D-printing and transfer-printing based fabrication method for hybrid barium titanate (BTO)/polydimethylsiloxane (PDMS) bilayer film with adjustable piezoceramic layer thickness. An internally hybridized BTO/PDMS sensor (HTPENG) results in greater charge separation and more efficient impedance matching at the interface of BTO and PDMS elastomer, as opposed to composites. The higher reproducibility and scalable production method can also drive large-scale industrial production. The resulting power density of HTPENG appeared to be 2.20 mW/cm2, nearly twice that of non-hybrid PDMS (PTENG). For the application, the hybrid flexible sensor appears to be highly effective for tire tread wear monitoring systems (TWMS). The direct, onboard, self-powered HTPENG sensor can detect tire wear with very high precision and with detection accuracy of ≤ 1 mm. Moreover, HTPENG can additionally function as a force and pressure sensor with a wide detection range (500 N > F > 10 N). Advancing a step closer to smart tires, this proof-of-concept hybrid sensor is, therefore, expected to bring about a sustainable alternative for the manufacture of onboard TWMS devices and possible dashboard integration in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分20
刚刚
1秒前
2秒前
2秒前
2秒前
2秒前
甜甜海豚发布了新的文献求助10
3秒前
沉静寄云发布了新的文献求助10
4秒前
看你个完成签到,获得积分10
4秒前
福桃完成签到,获得积分10
5秒前
yuany完成签到,获得积分10
5秒前
隐形曼青应助小番茄采纳,获得10
5秒前
Xinxxx发布了新的文献求助10
5秒前
6秒前
bioseraph完成签到,获得积分10
7秒前
zhanks完成签到,获得积分20
7秒前
大米发布了新的文献求助10
7秒前
跳跃鱼发布了新的文献求助10
8秒前
peekaboo完成签到,获得积分10
9秒前
科目三应助张点心采纳,获得10
9秒前
隐形曼青应助winner采纳,获得10
10秒前
mt应助慕容v小白采纳,获得30
11秒前
沉静寄云完成签到,获得积分10
11秒前
糖苑知道完成签到 ,获得积分10
12秒前
线性谐振子完成签到,获得积分10
13秒前
希望天下0贩的0应助QQ采纳,获得10
13秒前
14秒前
15秒前
wanci应助纯真尔竹采纳,获得10
15秒前
ding应助VDC采纳,获得10
16秒前
QLG完成签到,获得积分10
16秒前
devil发布了新的文献求助10
17秒前
斯文败类应助Joseph_Kerr采纳,获得10
17秒前
Himm完成签到,获得积分10
17秒前
yn发布了新的文献求助10
18秒前
QLG发布了新的文献求助10
20秒前
跳跃鱼发布了新的文献求助10
20秒前
20秒前
John完成签到 ,获得积分10
21秒前
Ava应助无限的FF采纳,获得30
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551943
求助须知:如何正确求助?哪些是违规求助? 3128370
关于积分的说明 9377451
捐赠科研通 2827382
什么是DOI,文献DOI怎么找? 1554345
邀请新用户注册赠送积分活动 725429
科研通“疑难数据库(出版商)”最低求助积分说明 714842