计算机科学
固件
假阳性悖论
Rootkit
污点检查
静态分析
别名
操作系统
启发式
计算机安全
Linux内核
恶意软件
嵌入式系统
软件
程序设计语言
数据挖掘
人工智能
作者
Kai Cheng,Yaowen Zheng,Tao Liu,Le Guan,Peng Liu,Hong Li,Hongsong Zhu,YE Ke-jiang,Limin Sun
标识
DOI:10.1145/3597926.3598062
摘要
Although the importance of using static taint analysis to detect taint-style vulnerabilities in Linux-based embedded firmware is widely recognized, existing approaches are plagued by following major limitations: (a) Existing works cannot properly handle indirect call on the path from attacker-controlled sources to security-sensitive sinks, resulting in lots of false negatives. (b) They employ heuristics to identify mediate taint source and it is not accurate enough, which leads to high false positives.
科研通智能强力驱动
Strongly Powered by AbleSci AI