Exploring Collaborative Distributed Diffusion-Based AI-Generated Content (AIGC) in Wireless Networks

计算机科学 分布式计算 无线网络 无线 移动设备 万维网 电信
作者
Hongyang Du,Zhang, Ruichen,Dusit Niyato,Jiawen Kang,Zehui Xiong,Dong In Kim,Xuemin Shen,H. Vincent Poor
出处
期刊:IEEE Network [Institute of Electrical and Electronics Engineers]
卷期号:: 1-8
标识
DOI:10.1109/mnet.006.2300223
摘要

Driven by advances in generative artificial intelligence (AI) techniques and algorithms, the widespread adoption of AI-generated content (AIGC) has emerged, allowing for the generation of diverse and high-quality content. Especially, the diffusion model-based AIGC technique has been widely used to generate content in a variety of modalities. However, the real-world implementation of AIGC models, particularly on resource-constrained devices such as mobile phones, introduces significant challenges related to energy consumption and privacy concerns. To further promote the realization of ubiquitous AIGC services, we propose a novel collaborative distributed diffusionbased AIGC framework. By capitalizing on collaboration among devices in wireless networks, the proposed framework facilitates the efficient execution of AIGC tasks, optimizing edge computation resource utilization. Furthermore, we examine the practical implementation of the denoising steps on mobile phones, the impact of the proposed approach on the wireless network-aided AIGC landscape, and the future opportunities associated with its real-world integration. The contributions of this paper not only offer a promising solution to the existing limitations of AIGC services but also pave the way for future research in device collaboration, resource optimization, and the seamless delivery of AIGC services across various devices. Our code is available at https://github.com/HongyangDu/DistributedDiffusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实的半山完成签到,获得积分10
刚刚
指纹抒写年轮完成签到,获得积分10
刚刚
愉快的哈密瓜完成签到,获得积分10
刚刚
小小发布了新的文献求助10
刚刚
小二郎应助成就缘分采纳,获得10
刚刚
1秒前
看看文献吧完成签到,获得积分10
1秒前
啵啵发布了新的文献求助10
1秒前
2秒前
初吻还在发布了新的文献求助10
2秒前
哇哦发布了新的文献求助10
3秒前
李唯佳发布了新的文献求助10
3秒前
3秒前
酷波er应助渊思采纳,获得10
3秒前
3秒前
罗mian完成签到,获得积分10
4秒前
4秒前
WUJIAYU完成签到 ,获得积分10
5秒前
小蘑菇应助小汤圆采纳,获得10
6秒前
认真的小熊饼干完成签到,获得积分10
6秒前
Grayball应助蒙开心采纳,获得10
6秒前
6秒前
真开心完成签到,获得积分10
6秒前
Ava应助点点采纳,获得10
6秒前
Seldomyg完成签到 ,获得积分10
7秒前
鲸是海蓝色关注了科研通微信公众号
7秒前
南亭完成签到,获得积分10
7秒前
Orange应助o10采纳,获得10
8秒前
8秒前
8秒前
小王发布了新的文献求助10
9秒前
初吻还在完成签到,获得积分10
10秒前
MADKAI发布了新的文献求助10
10秒前
Asss完成签到,获得积分10
10秒前
10秒前
时光友岸完成签到,获得积分10
11秒前
12秒前
昭昭完成签到,获得积分10
12秒前
niu1完成签到,获得积分10
13秒前
铃兰完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672