Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs

计算机科学 启发式 强化学习 网络拥塞 网络数据包 延迟(音频) 分布式计算 推论 加速 人工智能 计算机网络 并行计算 操作系统 电信
作者
Benjamin Fuhrer,Yuval Shpigelman,Chen Tessler,Shie Mannor,Gal Chechik,Eitan Zahavi,Gal Dalal
标识
DOI:10.1109/ccgrid57682.2023.00039
摘要

As communication protocols evolve, datacenter network utilization increases. As a result, congestion is more frequent, causing higher latency and packet loss. Combined with the increasing complexity of workloads, manual design of congestion control (CC) algorithms becomes extremely difficult. This calls for the development of AI approaches to replace the human effort. Unfortunately, it is currently not possible to deploy AI models on network devices due to their limited computational capabilities. Here, we offer a solution to this problem by building a computationally-light solution based on a recent reinforcement learning CC algorithm [arXiv:2207.02295]. We reduce the inference time of RL-CC by x500 by distilling its complex neural network into decision trees. This transformation enables real-time inference within the $\mu$-sec decision-time requirement, with a negligible effect on quality. We deploy the transformed policy on NVIDIA NICs in a live cluster. Compared to popular CC algorithms used in production, RL-CC is the only method that performs well on all benchmarks tested over a large range of number of flows. It balances multiple metrics simultaneously: bandwidth, latency, and packet drops. These results suggest that data-driven methods for CC are feasible, challenging the prior belief that handcrafted heuristics are necessary to achieve optimal performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JUGG发布了新的文献求助10
2秒前
2秒前
linjiaxin完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
大方乐安完成签到,获得积分20
5秒前
Hou完成签到 ,获得积分10
5秒前
6秒前
6秒前
天火发布了新的文献求助10
6秒前
yaoccccchen完成签到,获得积分10
7秒前
JUGG完成签到,获得积分10
7秒前
Murphy发布了新的文献求助10
9秒前
研友_8WM4Kn应助lljken采纳,获得10
9秒前
义气笑容完成签到,获得积分10
9秒前
李健应助阔达的盼海采纳,获得10
9秒前
maybe完成签到 ,获得积分10
10秒前
lxy发布了新的文献求助10
11秒前
11秒前
粗暴的海豚完成签到,获得积分10
13秒前
15秒前
16秒前
知源完成签到 ,获得积分10
17秒前
17秒前
poison完成签到 ,获得积分10
17秒前
18秒前
18秒前
丁俊杰发布了新的文献求助30
18秒前
殷超完成签到,获得积分0
19秒前
流星完成签到,获得积分10
22秒前
22秒前
22秒前
顾末完成签到,获得积分10
23秒前
纯真的板栗完成签到,获得积分10
24秒前
忧语梦关注了科研通微信公众号
24秒前
24秒前
25秒前
犹豫的紫山完成签到,获得积分10
26秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3710379
求助须知:如何正确求助?哪些是违规求助? 3259391
关于积分的说明 9908417
捐赠科研通 2972455
什么是DOI,文献DOI怎么找? 1629885
邀请新用户注册赠送积分活动 772978
科研通“疑难数据库(出版商)”最低求助积分说明 744148