Attention‐guided multi‐scale context aggregation network for multi‐modal brain glioma segmentation

计算机科学 分割 背景(考古学) 人工智能 卷积神经网络 判别式 特征(语言学) 模式识别(心理学) 特征提取 图像分割 语言学 生物 哲学 古生物学
作者
Shaozhi Wu,Yunjian Cao,Xinke Li,Qiyu Liu,Yuyun Ye,Xingang Liu,Liaoyuan Zeng,Miao Tian
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7629-7640 被引量:2
标识
DOI:10.1002/mp.16452
摘要

Accurate segmentation of brain glioma is a critical prerequisite for clinical diagnosis, surgical planning and treatment evaluation. In current clinical workflow, physicians typically perform delineation of brain tumor subregions slice-by-slice, which is more susceptible to variabilities in raters and also time-consuming. Besides, even though convolutional neural networks (CNNs) are driving progress, the performance of standard models still have some room for further improvement.To deal with these issues, this paper proposes an attention-guided multi-scale context aggregation network (AMCA-Net) for the accurate segmentation of brain glioma in the magnetic resonance imaging (MRI) images with multi-modalities.AMCA-Net extracts the multi-scale features from the MRI images and fuses the extracted discriminative features via a self-attention mechanism for brain glioma segmentation. The extraction is performed via a series of down-sampling, convolution layers, and the global context information guidance (GCIG) modules are developed to fuse the features extracted for contextual features. At the end of the down-sampling, a multi-scale fusion (MSF) module is designed to exploit and combine all the extracted multi-scale features. Each of the GCIG and MSF modules contain a channel attention (CA) module that can adaptively calibrate feature responses and emphasize the most relevant features. Finally, multiple predictions with different resolutions are fused through different weightings given by a multi-resolution adaptation (MRA) module instead of the use of averaging or max-pooling to improve the final segmentation results.Datasets used in this paper are publicly accessible, that is, the Multimodal Brain Tumor Segmentation Challenges 2018 (BraTS2018) and 2019 (BraTS2019). BraTS2018 contains 285 patient cases and BraTS2019 contains 335 cases. Simulations show that the AMCA-Net has better or comparable performance against that of the other state-of-the-art models. In terms of the Dice score and Hausdorff 95 for the BraTS2018 dataset, 90.4% and 10.2 mm for the whole tumor region (WT), 83.9% and 7.4 mm for the tumor core region (TC), 80.2% and 4.3 mm for the enhancing tumor region (ET), whereas the Dice score and Hausdorff 95 for the BraTS2019 dataset, 91.0% and 10.7 mm for the WT, 84.2% and 8.4 mm for the TC, 80.1% and 4.8 mm for the ET.The proposed AMCA-Net performs comparably well in comparison to several state-of-the-art neural net models in identifying the areas involving the peritumoral edema, enhancing tumor, and necrotic and non-enhancing tumor core of brain glioma, which has great potential for clinical practice. In future research, we will further explore the feasibility of applying AMCA-Net to other similar segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
那年夏天完成签到,获得积分10
1秒前
1秒前
阔达代芹完成签到,获得积分10
1秒前
1秒前
zyj完成签到,获得积分10
2秒前
Pec完成签到,获得积分10
2秒前
fane发布了新的文献求助30
2秒前
彭于彦祖应助标致的紫翠采纳,获得20
3秒前
枫叶荻花完成签到 ,获得积分10
3秒前
3秒前
David完成签到 ,获得积分10
4秒前
腼腆的以蕊完成签到,获得积分10
4秒前
4秒前
妮妮完成签到,获得积分10
4秒前
轻松尔蝶完成签到 ,获得积分10
5秒前
泡泡老爷车完成签到,获得积分10
5秒前
5秒前
de完成签到,获得积分10
5秒前
英俊凡波发布了新的文献求助10
5秒前
5秒前
5秒前
biang完成签到,获得积分10
5秒前
小桂园完成签到,获得积分10
5秒前
小卫完成签到,获得积分10
6秒前
wwt完成签到,获得积分20
6秒前
7秒前
zj完成签到 ,获得积分10
7秒前
7秒前
7秒前
泶1完成签到,获得积分10
7秒前
lmy发布了新的文献求助10
8秒前
nanishard完成签到,获得积分10
8秒前
ljr发布了新的文献求助20
9秒前
asjm完成签到 ,获得积分10
9秒前
叶123456789发布了新的文献求助10
9秒前
9秒前
JL完成签到,获得积分10
9秒前
华仔应助zhu采纳,获得10
10秒前
NANA发布了新的文献求助30
10秒前
lllllq发布了新的文献求助10
11秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725848
求助须知:如何正确求助?哪些是违规求助? 3270880
关于积分的说明 9969512
捐赠科研通 2986307
什么是DOI,文献DOI怎么找? 1638161
邀请新用户注册赠送积分活动 777987
科研通“疑难数据库(出版商)”最低求助积分说明 747365