邻苯二甲酸酐
碳酸盐
邻苯二甲酸
化学
序列(生物学)
有机化学
立体化学
催化作用
生物化学
作者
Guang‐Hui He,Bai‐Hao Ren,Shang Wang,Ye Liu,Xiao‐Bing Lu
标识
DOI:10.1002/anie.202304943
摘要
The statistical terpolymerization of epoxides, CO2 and cyclic anhydrides remains challenging, mainly because epoxide/CO2 and epoxide/anhydride copolymerizations typically proceed at considerably different rates. Herein, we report the syntheses of novel chiral terpolymers with unprecedented statistical distributions of carbonate and ester units (up to 50 % junction units) via the one-pot reaction of cyclohexene oxide, phthalic anhydride, and CO2 under mild conditions using enantiopure bimetallic aluminum-complex-based catalyst systems. Notably, all resulting terpolymers exhibited excellent enantioselectivities (≥96 % ee) that were independent of the carbonate-ester distribution. The statistical compositions of the carbonate and ester units in the resulting terpolymers were determined via 1 H and 13 C NMR spectroscopies. Furthermore, thermal properties were tuned by altering the ester content of the chiral terpolymer without influencing the enantioselective ring-opening step involving the meso-epoxide. This asymmetric terpolymerization methodology is also compatible with a variety of meso-epoxides to afford the corresponding terpolymers with 17 %-25 % junction units and excellent enantioselectivities (94 %-99 % ee). The present study is expected to provide new guidelines for preparing a broad range of biodegradable polymers with excellent enantioselectivities and adjustable properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI