已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-task supply-demand prediction and reliability analysis for docked bike-sharing systems via transformer-encoder-based neural processes

概率逻辑 计算机科学 编码器 机器学习 人工智能 变压器 高斯过程 高斯分布 数据挖掘 工程类 量子力学 操作系统 电气工程 物理 电压
作者
Meng Xu,Yining Di,Hai Yang,Xiqun Chen,Zheng Zhu
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:147: 104015-104015 被引量:2
标识
DOI:10.1016/j.trc.2023.104015
摘要

With the rise of sharing economy, bike-sharing systems (BSSs) have gained heated attention, and their operations require accurate prediction of bike usage. Although many deep learning methods have been exploited to predict bike usage, they generally provide point predictions of average bike usage, neglecting the stochasticity in BSSs. Due to the analytically explainable properties and linear computational costs with respect to data size, neural processes (NPs) have recently attracted increasing interest. An NP model learns a Gaussian process (GP) by mapping the input–output observations to a probabilistic distribution over functions. Each function is a distribution of the outputs given an input, conditioned on the arbitrary size of observed data. NPs provide probabilistic confidence in predicted results, which overcomes the point prediction issue faced by other models and provides insights for operational strategies in stochastic scenarios. This paper originally proposes a transformer-encoder-based NP (TENP) model to fit the distribution of bike usage in BSSs. To the best of our knowledge, this work is among the first to incorporate transformer encoders into NPs, enhancing the capability of extracting relevant information in a targeted manner. Based on the Citi Bike datasets in New York City, the TENP method is adopted in a multi-task learning task that simultaneously fits the number of pickups and returns. The proposed TENP model outperforms the conventional NP method and its extensions and prevalent machine learning models in terms of prediction accuracy. Armed with the probabilistic confidence provided by the TENP, reliability analysis is conducted, and thoughtful guidance is provided for bike-sharing operations, such as dynamic bike rebalancing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人世开完成签到,获得积分10
刚刚
不甜完成签到,获得积分10
1秒前
1秒前
快乐友易发布了新的文献求助10
2秒前
2秒前
CodeCraft应助wu采纳,获得10
5秒前
mankit完成签到,获得积分10
6秒前
关我屁事发布了新的文献求助10
6秒前
JJ完成签到,获得积分10
7秒前
zengmin完成签到,获得积分10
8秒前
乐乐发布了新的文献求助10
9秒前
MaoTing完成签到,获得积分10
11秒前
七七完成签到,获得积分10
12秒前
唐圜完成签到,获得积分10
13秒前
科研通AI5应助快乐友易采纳,获得10
14秒前
匆匆完成签到,获得积分10
14秒前
飞飞飞fff完成签到 ,获得积分10
17秒前
周星星完成签到,获得积分10
19秒前
20秒前
科研通AI2S应助willllll采纳,获得10
21秒前
21秒前
23秒前
23秒前
joker完成签到 ,获得积分10
24秒前
芊芊完成签到 ,获得积分10
25秒前
周星星发布了新的文献求助10
25秒前
高大zj发布了新的文献求助10
26秒前
谨慎盼山完成签到,获得积分10
26秒前
七人七发布了新的文献求助30
26秒前
sam完成签到 ,获得积分10
27秒前
zwhy发布了新的文献求助10
27秒前
酸番茄完成签到 ,获得积分10
28秒前
菜鸡5号完成签到,获得积分10
31秒前
高大zj完成签到,获得积分10
34秒前
小小飞xxf完成签到 ,获得积分10
34秒前
香蕉傲松完成签到,获得积分10
34秒前
侃侃完成签到,获得积分10
37秒前
完美世界应助HJJHJH采纳,获得20
37秒前
wanci应助关我屁事采纳,获得10
38秒前
39秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477379
求助须知:如何正确求助?哪些是违规求助? 3068812
关于积分的说明 9109727
捐赠科研通 2760297
什么是DOI,文献DOI怎么找? 1514760
邀请新用户注册赠送积分活动 700461
科研通“疑难数据库(出版商)”最低求助积分说明 699566