计算机科学
球形
趋同(经济学)
网格
光学(聚焦)
粒子(生态学)
计算科学
领域(数学分析)
流体模拟
直接数值模拟
流量(数学)
数学优化
机械
数学
几何学
物理
数学分析
地质学
雷诺数
海洋学
光学
经济
经济增长
湍流
作者
Markus Uhlmann,J. J. Derksen,Anthony Wachs,Lian‐Ping Wang,Manuel Moriche
出处
期刊:Elsevier eBooks
[Elsevier]
日期:2023-01-01
卷期号:: 147-184
被引量:1
标识
DOI:10.1016/b978-0-32-390133-8.00013-x
摘要
In the present chapter we focus on the fundamentals of non-grid-conforming numerical approaches to simulating particulate flows, implementation issues, and grid convergence vs. available reference data. The main idea is to avoid adapting the mesh (and – as much as possible – the discrete operators) to the time-dependent fluid domain with the aim to maximize computational efficiency. We restrict our attention to spherical particle shapes (while deviations from sphericity are treated in a subsequent chapter). We show that similar ideas can be successfully implemented in a variety of underlying fluid flow solvers, leading to powerful tools for the direct numerical simulation of large particulate systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI