A semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide images

亚型 任务(项目管理) 计算机科学 人工智能 注释 特征(语言学) 机器学习 提取器 过程(计算) 模式识别(心理学) 程序设计语言 工程类 工艺工程 语言学 哲学 系统工程
作者
Zeyu Gao,Bangyang Hong,Yang Li,Xianli Zhang,Jialun Wu,Chunbao Wang,Xiangrong Zhang,Tieliang Gong,Yefeng Zheng,Deyu Meng,Chen Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102652-102652 被引量:36
标识
DOI:10.1016/j.media.2022.102652
摘要

Cancer region detection (CRD) and subtyping are two fundamental tasks in digital pathology image analysis. The development of data-driven models for CRD and subtyping on whole-slide images (WSIs) would mitigate the burden of pathologists and improve their accuracy in diagnosis. However, the existing models are facing two major limitations. Firstly, they typically require large-scale datasets with precise annotations, which contradicts with the original intention of reducing labor effort. Secondly, for the subtyping task, the non-cancerous regions are treated as the same as cancerous regions within a WSI, which confuses a subtyping model in its training process. To tackle the latter limitation, the previous research proposed to perform CRD first for ruling out the non-cancerous region, then train a subtyping model based on the remaining cancerous patches. However, separately training ignores the interaction of these two tasks, also leads to propagating the error of the CRD task to the subtyping task. To address these issues and concurrently improve the performance on both CRD and subtyping tasks, we propose a semi-supervised multi-task learning (MTL) framework for cancer classification. Our framework consists of a backbone feature extractor, two task-specific classifiers, and a weight control mechanism. The backbone feature extractor is shared by two task-specific classifiers, such that the interaction of CRD and subtyping tasks can be captured. The weight control mechanism preserves the sequential relationship of these two tasks and guarantees the error back-propagation from the subtyping task to the CRD task under the MTL framework. We train the overall framework in a semi-supervised setting, where datasets only involve small quantities of annotations produced by our minimal point-based (min-point) annotation strategy. Extensive experiments on four large datasets with different cancer types demonstrate the effectiveness of the proposed framework in both accuracy and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神奇大药丸完成签到,获得积分10
2秒前
哎嘤斯坦发布了新的文献求助10
3秒前
bkagyin应助cz采纳,获得10
3秒前
清脆语海完成签到,获得积分10
4秒前
BOSS徐发布了新的文献求助10
4秒前
liugm完成签到,获得积分10
5秒前
星夜吹笛牛上完成签到,获得积分10
6秒前
脑洞疼应助Serein采纳,获得10
7秒前
GG完成签到 ,获得积分10
7秒前
aimee完成签到,获得积分10
8秒前
11秒前
程未央_12完成签到,获得积分10
11秒前
所所应助无聊先知采纳,获得10
12秒前
礼物盒完成签到,获得积分10
12秒前
爱吃麻辣烫应助哎嘤斯坦采纳,获得10
12秒前
田様应助csuxxm采纳,获得10
12秒前
13秒前
遇more完成签到 ,获得积分10
14秒前
xerrr完成签到,获得积分20
15秒前
语物发布了新的文献求助10
16秒前
16秒前
王小磊完成签到,获得积分10
16秒前
16秒前
李麟发布了新的文献求助10
18秒前
18秒前
18秒前
明理青丝完成签到,获得积分10
18秒前
烟花应助刀杨同学采纳,获得30
19秒前
liu完成签到,获得积分10
19秒前
20秒前
20秒前
彭于晏应助大耳朵涂涂采纳,获得10
20秒前
微神阳发布了新的文献求助10
21秒前
弹指一挥间完成签到,获得积分10
21秒前
礼物盒发布了新的文献求助10
21秒前
水三寿发布了新的文献求助10
21秒前
何小熊发布了新的文献求助10
22秒前
22秒前
22秒前
白熊IceBear发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150106
求助须知:如何正确求助?哪些是违规求助? 2801196
关于积分的说明 7843534
捐赠科研通 2458660
什么是DOI,文献DOI怎么找? 1308585
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721