A semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide images

亚型 任务(项目管理) 计算机科学 人工智能 注释 特征(语言学) 机器学习 提取器 过程(计算) 模式识别(心理学) 程序设计语言 工程类 工艺工程 语言学 哲学 系统工程
作者
Zeyu Gao,Bangyang Hong,Yang Li,Xianli Zhang,Jialun Wu,Chunbao Wang,Xiangrong Zhang,Tieliang Gong,Yefeng Zheng,Deyu Meng,Chen Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:83: 102652-102652 被引量:37
标识
DOI:10.1016/j.media.2022.102652
摘要

Cancer region detection (CRD) and subtyping are two fundamental tasks in digital pathology image analysis. The development of data-driven models for CRD and subtyping on whole-slide images (WSIs) would mitigate the burden of pathologists and improve their accuracy in diagnosis. However, the existing models are facing two major limitations. Firstly, they typically require large-scale datasets with precise annotations, which contradicts with the original intention of reducing labor effort. Secondly, for the subtyping task, the non-cancerous regions are treated as the same as cancerous regions within a WSI, which confuses a subtyping model in its training process. To tackle the latter limitation, the previous research proposed to perform CRD first for ruling out the non-cancerous region, then train a subtyping model based on the remaining cancerous patches. However, separately training ignores the interaction of these two tasks, also leads to propagating the error of the CRD task to the subtyping task. To address these issues and concurrently improve the performance on both CRD and subtyping tasks, we propose a semi-supervised multi-task learning (MTL) framework for cancer classification. Our framework consists of a backbone feature extractor, two task-specific classifiers, and a weight control mechanism. The backbone feature extractor is shared by two task-specific classifiers, such that the interaction of CRD and subtyping tasks can be captured. The weight control mechanism preserves the sequential relationship of these two tasks and guarantees the error back-propagation from the subtyping task to the CRD task under the MTL framework. We train the overall framework in a semi-supervised setting, where datasets only involve small quantities of annotations produced by our minimal point-based (min-point) annotation strategy. Extensive experiments on four large datasets with different cancer types demonstrate the effectiveness of the proposed framework in both accuracy and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TL完成签到,获得积分10
1秒前
科研通AI6应助博修采纳,获得10
1秒前
1秒前
nanfang完成签到 ,获得积分10
1秒前
李爱国应助Jasper采纳,获得30
1秒前
star009完成签到,获得积分10
2秒前
科研通AI6应助23xyke采纳,获得10
2秒前
科研通AI6应助冷酷傲易采纳,获得20
2秒前
小武完成签到,获得积分10
2秒前
科研通AI5应助柒柒_BX采纳,获得10
2秒前
3秒前
啦啦啦完成签到,获得积分10
3秒前
3秒前
dlindl完成签到,获得积分10
3秒前
xjcy应助干净海秋采纳,获得10
3秒前
菜菜发布了新的文献求助10
3秒前
4秒前
614521发布了新的文献求助10
4秒前
aki发布了新的文献求助10
4秒前
俏皮易绿完成签到 ,获得积分10
4秒前
5秒前
秀儿完成签到,获得积分10
5秒前
果粒红豆豆完成签到,获得积分10
5秒前
小林关注了科研通微信公众号
6秒前
6秒前
萌妹发布了新的文献求助10
6秒前
mei发布了新的文献求助10
6秒前
hmv发布了新的文献求助10
6秒前
苏浩然完成签到,获得积分10
6秒前
搜集达人应助xL采纳,获得10
7秒前
祖逸凡完成签到,获得积分10
7秒前
星辰大海应助iveuplife采纳,获得10
8秒前
丁浩伦发布了新的文献求助10
8秒前
8秒前
zhangj696应助zl52采纳,获得20
8秒前
西大喜完成签到,获得积分10
8秒前
9秒前
Candy发布了新的文献求助10
9秒前
10秒前
爆米花应助青夏采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585432
求助须知:如何正确求助?哪些是违规求助? 4002122
关于积分的说明 12389406
捐赠科研通 3678232
什么是DOI,文献DOI怎么找? 2027162
邀请新用户注册赠送积分活动 1060707
科研通“疑难数据库(出版商)”最低求助积分说明 947227