A semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide images

亚型 任务(项目管理) 计算机科学 人工智能 注释 特征(语言学) 机器学习 提取器 过程(计算) 模式识别(心理学) 程序设计语言 工程类 工艺工程 语言学 哲学 系统工程
作者
Zeyu Gao,Bangyang Hong,Yang Li,Xianli Zhang,Jialun Wu,Chunbao Wang,Xiangrong Zhang,Tieliang Gong,Yefeng Zheng,Deyu Meng,Chen Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:83: 102652-102652 被引量:37
标识
DOI:10.1016/j.media.2022.102652
摘要

Cancer region detection (CRD) and subtyping are two fundamental tasks in digital pathology image analysis. The development of data-driven models for CRD and subtyping on whole-slide images (WSIs) would mitigate the burden of pathologists and improve their accuracy in diagnosis. However, the existing models are facing two major limitations. Firstly, they typically require large-scale datasets with precise annotations, which contradicts with the original intention of reducing labor effort. Secondly, for the subtyping task, the non-cancerous regions are treated as the same as cancerous regions within a WSI, which confuses a subtyping model in its training process. To tackle the latter limitation, the previous research proposed to perform CRD first for ruling out the non-cancerous region, then train a subtyping model based on the remaining cancerous patches. However, separately training ignores the interaction of these two tasks, also leads to propagating the error of the CRD task to the subtyping task. To address these issues and concurrently improve the performance on both CRD and subtyping tasks, we propose a semi-supervised multi-task learning (MTL) framework for cancer classification. Our framework consists of a backbone feature extractor, two task-specific classifiers, and a weight control mechanism. The backbone feature extractor is shared by two task-specific classifiers, such that the interaction of CRD and subtyping tasks can be captured. The weight control mechanism preserves the sequential relationship of these two tasks and guarantees the error back-propagation from the subtyping task to the CRD task under the MTL framework. We train the overall framework in a semi-supervised setting, where datasets only involve small quantities of annotations produced by our minimal point-based (min-point) annotation strategy. Extensive experiments on four large datasets with different cancer types demonstrate the effectiveness of the proposed framework in both accuracy and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嗯哼完成签到,获得积分10
2秒前
2秒前
ccyy完成签到 ,获得积分10
3秒前
KDS发布了新的文献求助10
3秒前
橙子加油发布了新的文献求助10
3秒前
4秒前
九千七发布了新的文献求助10
4秒前
故渊完成签到,获得积分10
4秒前
万能图书馆应助过氧化氢采纳,获得20
5秒前
yan完成签到,获得积分10
6秒前
黑黑黑发布了新的文献求助10
6秒前
万能图书馆应助环游水星采纳,获得10
6秒前
阿良完成签到,获得积分10
7秒前
Joe完成签到 ,获得积分10
7秒前
8564523完成签到,获得积分10
8秒前
dandan完成签到,获得积分10
8秒前
单薄的夜南应助Connie采纳,获得10
8秒前
啦啦啦完成签到,获得积分10
8秒前
9秒前
小马过河应助小汤圆采纳,获得10
9秒前
九千七完成签到,获得积分20
9秒前
皮划艇发布了新的文献求助30
9秒前
Firenze完成签到,获得积分20
10秒前
浪浪山第一酷完成签到,获得积分10
10秒前
Dr_R完成签到,获得积分10
10秒前
KDS完成签到,获得积分10
10秒前
11秒前
11秒前
domingo发布了新的文献求助20
12秒前
Cain发布了新的文献求助10
12秒前
小马甲应助车大花采纳,获得10
12秒前
12秒前
wwz发布了新的文献求助30
13秒前
13秒前
666完成签到,获得积分10
13秒前
cheng完成签到,获得积分10
13秒前
yang完成签到,获得积分10
15秒前
能干雁凡发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650