亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide images

亚型 任务(项目管理) 计算机科学 人工智能 注释 特征(语言学) 机器学习 提取器 过程(计算) 模式识别(心理学) 程序设计语言 工程类 工艺工程 语言学 哲学 系统工程
作者
Zeyu Gao,Bangyang Hong,Yang Li,Xianli Zhang,Jialun Wu,Chunbao Wang,Xiangrong Zhang,Tieliang Gong,Yefeng Zheng,Deyu Meng,Chen Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:83: 102652-102652 被引量:37
标识
DOI:10.1016/j.media.2022.102652
摘要

Cancer region detection (CRD) and subtyping are two fundamental tasks in digital pathology image analysis. The development of data-driven models for CRD and subtyping on whole-slide images (WSIs) would mitigate the burden of pathologists and improve their accuracy in diagnosis. However, the existing models are facing two major limitations. Firstly, they typically require large-scale datasets with precise annotations, which contradicts with the original intention of reducing labor effort. Secondly, for the subtyping task, the non-cancerous regions are treated as the same as cancerous regions within a WSI, which confuses a subtyping model in its training process. To tackle the latter limitation, the previous research proposed to perform CRD first for ruling out the non-cancerous region, then train a subtyping model based on the remaining cancerous patches. However, separately training ignores the interaction of these two tasks, also leads to propagating the error of the CRD task to the subtyping task. To address these issues and concurrently improve the performance on both CRD and subtyping tasks, we propose a semi-supervised multi-task learning (MTL) framework for cancer classification. Our framework consists of a backbone feature extractor, two task-specific classifiers, and a weight control mechanism. The backbone feature extractor is shared by two task-specific classifiers, such that the interaction of CRD and subtyping tasks can be captured. The weight control mechanism preserves the sequential relationship of these two tasks and guarantees the error back-propagation from the subtyping task to the CRD task under the MTL framework. We train the overall framework in a semi-supervised setting, where datasets only involve small quantities of annotations produced by our minimal point-based (min-point) annotation strategy. Extensive experiments on four large datasets with different cancer types demonstrate the effectiveness of the proposed framework in both accuracy and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Charlie完成签到 ,获得积分10
22秒前
大模型应助科研通管家采纳,获得10
38秒前
顾矜应助科研通管家采纳,获得10
2分钟前
kuoping完成签到,获得积分0
3分钟前
IShowSpeed完成签到,获得积分10
3分钟前
asd1576562308完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
xun完成签到,获得积分20
5分钟前
陈陈完成签到,获得积分10
5分钟前
SimonShaw完成签到,获得积分10
5分钟前
5分钟前
汪汪淬冰冰完成签到,获得积分10
5分钟前
陈陈关注了科研通微信公众号
6分钟前
6分钟前
7分钟前
陈陈发布了新的文献求助20
7分钟前
8分钟前
MchemG应助科研通管家采纳,获得100
8分钟前
MchemG应助科研通管家采纳,获得100
8分钟前
MchemG应助科研通管家采纳,获得100
8分钟前
MchemG应助科研通管家采纳,获得10
8分钟前
8分钟前
9分钟前
走啊走应助arniu2008采纳,获得10
9分钟前
cc完成签到 ,获得积分10
10分钟前
10分钟前
MchemG应助科研通管家采纳,获得10
10分钟前
黄景滨完成签到 ,获得积分10
11分钟前
曙光完成签到,获得积分10
11分钟前
11分钟前
优秀的dd完成签到 ,获得积分10
11分钟前
xxxy发布了新的文献求助30
11分钟前
12分钟前
MchemG应助科研通管家采纳,获得30
12分钟前
李东东完成签到 ,获得积分10
12分钟前
12分钟前
希望天下0贩的0应助xxxy采纳,获得30
12分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137824
求助须知:如何正确求助?哪些是违规求助? 4337446
关于积分的说明 13511562
捐赠科研通 4176213
什么是DOI,文献DOI怎么找? 2289894
邀请新用户注册赠送积分活动 1290432
关于科研通互助平台的介绍 1232270