亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide images

亚型 任务(项目管理) 计算机科学 人工智能 注释 特征(语言学) 机器学习 提取器 过程(计算) 模式识别(心理学) 程序设计语言 工程类 工艺工程 语言学 哲学 系统工程
作者
Zeyu Gao,Bangyang Hong,Yang Li,Xianli Zhang,Jialun Wu,Chunbao Wang,Xiangrong Zhang,Tieliang Gong,Yefeng Zheng,Deyu Meng,Chen Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102652-102652 被引量:37
标识
DOI:10.1016/j.media.2022.102652
摘要

Cancer region detection (CRD) and subtyping are two fundamental tasks in digital pathology image analysis. The development of data-driven models for CRD and subtyping on whole-slide images (WSIs) would mitigate the burden of pathologists and improve their accuracy in diagnosis. However, the existing models are facing two major limitations. Firstly, they typically require large-scale datasets with precise annotations, which contradicts with the original intention of reducing labor effort. Secondly, for the subtyping task, the non-cancerous regions are treated as the same as cancerous regions within a WSI, which confuses a subtyping model in its training process. To tackle the latter limitation, the previous research proposed to perform CRD first for ruling out the non-cancerous region, then train a subtyping model based on the remaining cancerous patches. However, separately training ignores the interaction of these two tasks, also leads to propagating the error of the CRD task to the subtyping task. To address these issues and concurrently improve the performance on both CRD and subtyping tasks, we propose a semi-supervised multi-task learning (MTL) framework for cancer classification. Our framework consists of a backbone feature extractor, two task-specific classifiers, and a weight control mechanism. The backbone feature extractor is shared by two task-specific classifiers, such that the interaction of CRD and subtyping tasks can be captured. The weight control mechanism preserves the sequential relationship of these two tasks and guarantees the error back-propagation from the subtyping task to the CRD task under the MTL framework. We train the overall framework in a semi-supervised setting, where datasets only involve small quantities of annotations produced by our minimal point-based (min-point) annotation strategy. Extensive experiments on four large datasets with different cancer types demonstrate the effectiveness of the proposed framework in both accuracy and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
electricelectric应助Benhnhk21采纳,获得30
2秒前
Ava应助33采纳,获得10
38秒前
Andrewlabeth完成签到,获得积分10
48秒前
zhao完成签到 ,获得积分0
59秒前
Levelsinc发布了新的文献求助30
1分钟前
1分钟前
雨jia完成签到,获得积分10
1分钟前
zhoufz发布了新的文献求助20
1分钟前
1分钟前
Levelsinc完成签到,获得积分10
1分钟前
2分钟前
从容芮完成签到,获得积分0
2分钟前
liuliu发布了新的文献求助10
2分钟前
liuliu完成签到,获得积分20
2分钟前
CodeCraft应助xlj采纳,获得10
3分钟前
634301059完成签到 ,获得积分10
3分钟前
专注白昼应助zhoufz采纳,获得10
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
xlj发布了新的文献求助10
3分钟前
3分钟前
33发布了新的文献求助10
3分钟前
3分钟前
zhoufz完成签到,获得积分20
3分钟前
里昂发布了新的文献求助60
3分钟前
4分钟前
阿婧完成签到 ,获得积分10
4分钟前
里昂完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
姗姗发布了新的文献求助10
6分钟前
英俊的铭应助姗姗采纳,获得30
6分钟前
姗姗完成签到,获得积分10
6分钟前
852应助堪冷之采纳,获得30
7分钟前
浮游应助科研通管家采纳,获得10
7分钟前
浮游应助科研通管家采纳,获得10
7分钟前
汉堡包应助科研通管家采纳,获得10
7分钟前
fangye发布了新的文献求助100
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292441
求助须知:如何正确求助?哪些是违规求助? 4442998
关于积分的说明 13830773
捐赠科研通 4326410
什么是DOI,文献DOI怎么找? 2374844
邀请新用户注册赠送积分活动 1370182
关于科研通互助平台的介绍 1334641