A semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide images

亚型 任务(项目管理) 计算机科学 人工智能 注释 特征(语言学) 机器学习 提取器 过程(计算) 模式识别(心理学) 程序设计语言 工程类 工艺工程 语言学 哲学 系统工程
作者
Zeyu Gao,Bangyang Hong,Yang Li,Xianli Zhang,Jialun Wu,Chunbao Wang,Xiangrong Zhang,Tieliang Gong,Yefeng Zheng,Deyu Meng,Chen Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:83: 102652-102652 被引量:37
标识
DOI:10.1016/j.media.2022.102652
摘要

Cancer region detection (CRD) and subtyping are two fundamental tasks in digital pathology image analysis. The development of data-driven models for CRD and subtyping on whole-slide images (WSIs) would mitigate the burden of pathologists and improve their accuracy in diagnosis. However, the existing models are facing two major limitations. Firstly, they typically require large-scale datasets with precise annotations, which contradicts with the original intention of reducing labor effort. Secondly, for the subtyping task, the non-cancerous regions are treated as the same as cancerous regions within a WSI, which confuses a subtyping model in its training process. To tackle the latter limitation, the previous research proposed to perform CRD first for ruling out the non-cancerous region, then train a subtyping model based on the remaining cancerous patches. However, separately training ignores the interaction of these two tasks, also leads to propagating the error of the CRD task to the subtyping task. To address these issues and concurrently improve the performance on both CRD and subtyping tasks, we propose a semi-supervised multi-task learning (MTL) framework for cancer classification. Our framework consists of a backbone feature extractor, two task-specific classifiers, and a weight control mechanism. The backbone feature extractor is shared by two task-specific classifiers, such that the interaction of CRD and subtyping tasks can be captured. The weight control mechanism preserves the sequential relationship of these two tasks and guarantees the error back-propagation from the subtyping task to the CRD task under the MTL framework. We train the overall framework in a semi-supervised setting, where datasets only involve small quantities of annotations produced by our minimal point-based (min-point) annotation strategy. Extensive experiments on four large datasets with different cancer types demonstrate the effectiveness of the proposed framework in both accuracy and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助turui采纳,获得10
刚刚
机灵紫萱完成签到,获得积分10
刚刚
2秒前
爆米花应助wuhan采纳,获得10
2秒前
善学以致用应助清风采纳,获得10
3秒前
xie_f完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
搞笑5次发布了新的文献求助10
3秒前
Lucas应助一只小胶质采纳,获得10
4秒前
Lucas应助式微采纳,获得10
4秒前
打打应助wenwen采纳,获得10
4秒前
酷酷剑通发布了新的文献求助10
4秒前
jjqqqj完成签到 ,获得积分10
4秒前
5秒前
5秒前
foxp3完成签到,获得积分10
6秒前
李健的小迷弟应助豆奶采纳,获得10
6秒前
揍个大西瓜完成签到,获得积分10
6秒前
7秒前
xiaoziyi666发布了新的文献求助10
8秒前
8秒前
8秒前
呵呵呵呵发布了新的文献求助10
9秒前
9秒前
zzy发布了新的文献求助30
10秒前
11秒前
panxue发布了新的文献求助10
11秒前
贲半梦完成签到,获得积分10
11秒前
12秒前
柳铁身发布了新的文献求助10
12秒前
小四喜发布了新的文献求助30
12秒前
所所应助ldd采纳,获得10
12秒前
科目三应助小美采纳,获得10
12秒前
13秒前
zjw1997发布了新的文献求助10
13秒前
科研通AI5应助郴欧尼采纳,获得30
13秒前
xiaoziyi666完成签到,获得积分10
13秒前
丘比特应助麻辣公主采纳,获得10
13秒前
zhiqu完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933690
求助须知:如何正确求助?哪些是违规求助? 4201746
关于积分的说明 13054958
捐赠科研通 3975817
什么是DOI,文献DOI怎么找? 2178602
邀请新用户注册赠送积分活动 1194932
关于科研通互助平台的介绍 1106316