超晶格
材料科学
钙钛矿(结构)
吸收(声学)
光伏系统
带隙
光电子学
能量转换效率
凝聚态物理
化学
结晶学
物理
复合材料
生态学
生物
作者
Liping Cheng,Baoen Xu,Yanli Zeng,Lingpeng Meng
摘要
The use of a superlattice structure is an effective strategy to develop novel perovskites and obtain excellent light-absorbing materials. Based on first-principles calculations, we systematically studied the properties of intrinsic point defects at the interface of the FAPbI3/MAPbI3 superlattice. Our calculations show that charged defects are easier to form as compared to neutral ones at the superlattice interface due to low formation energies. Most defects with low formation energies have a shallow level in the band gap, and some deep level defects have high formation energies, so the superlattice perovskite exhibits high defect tolerance. PbI3+ is a dominant and detrimental defect, which acts as a non-radiative recombination center because it has low formation energy and a deep transition level. To avoid the generation of PbI3+ defects, it is suggested to synthesize FAPbI3/MAPbI3 superlattices under I-rich conditions. The calculated light absorption coefficients and photovoltaic performance parameters demonstrate that the presence of defects leads to a certain degree of reduction in light absorption and power conversion efficiency (PCE) of solar cells made of FAPbI3/MAPbI3 superlattices, but the excellent performance of the perovskite solar cell (PSC) is basically retained. The superlattice perovskites are still promising candidates for light-absorbing materials of PSCs. This study is expected to contribute to a better understanding of the properties of defects at the superlattice interface and provide theoretical support for the design of high performance PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI