A Predictive Maintenance Strategy Using Deep Learning Quantile Regression and Kernel Density Estimation for Failure Prediction

预言 预测性维护 核密度估计 维修工程 计算机科学 核(代数) 灵活性(工程) 分位数 分位数回归 可靠性工程 自编码 人工智能 数据挖掘 机器学习 人工神经网络 工程类 统计 数学 组合数学 估计员
作者
Chuang Chen,Jiantao Shi,Mouquan Shen,Lihang Feng,Guanye Tao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:14
标识
DOI:10.1109/tim.2023.3240208
摘要

Failure prediction and maintenance decision-making are two core activities in a prognostics and health management (PHM) system. However, they are often studied independently and hierarchically. The main goal of this article is to combine system failure prediction with maintenance decision-making to develop a predictive maintenance strategy. System failure prediction is achieved by constructing an ensemble model of deep autoencoder (DAE), long short-term memory (LSTM), quantile regression (QR), and kernel density estimation (KDE), namely DAE-LSTMQR-KDE. Then, based on the probability density of system failure time obtained from the ensemble model, a replacement cost function (RCF) and an ordering cost function (OCF) are proposed to support maintenance and inventory decisions. Finally, optimal decisions are determined by minimizing the two cost functions. A score equal to 246.59 and a coverage width-based criterion (CWC) index equal to 0.35 were obtained when the DAE-LSTMQR-KDE ensemble model was applied to the C-MAPSS dataset, while the average maintenance cost rate (MCR) of the proposed maintenance strategy was 0.74. The results demonstrated that the proposed prediction and maintenance method outperforms several state-of-the-art methods. In addition, different cost structure scenarios are also investigated to illustrate the flexibility of maintenance decisions based on failure prediction information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助Ningxin采纳,获得10
3秒前
3秒前
兮豫完成签到,获得积分10
3秒前
SYLH应助qiyr采纳,获得20
4秒前
晨曦微露发布了新的文献求助10
5秒前
6秒前
芋泥泥泥完成签到 ,获得积分10
7秒前
ml完成签到,获得积分10
7秒前
7秒前
杨媛完成签到,获得积分10
7秒前
李健的小迷弟应助阿rain采纳,获得10
8秒前
9秒前
希望天下0贩的0应助BLUZ采纳,获得10
9秒前
2354发布了新的文献求助10
10秒前
红绿灯的黄完成签到,获得积分10
10秒前
夏蓉发布了新的文献求助30
11秒前
12秒前
12秒前
song发布了新的文献求助30
13秒前
13秒前
科研通AI5应助chai采纳,获得10
14秒前
渝风正气发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
16秒前
晨曦微露完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
18秒前
腼腆的恶天完成签到,获得积分10
19秒前
111发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
周子完成签到,获得积分10
23秒前
23秒前
阿rain发布了新的文献求助10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769651
求助须知:如何正确求助?哪些是违规求助? 3314720
关于积分的说明 10173463
捐赠科研通 3030075
什么是DOI,文献DOI怎么找? 1662585
邀请新用户注册赠送积分活动 795040
科研通“疑难数据库(出版商)”最低求助积分说明 756519