Research on map emotional semantics using deep learning approach

语义学(计算机科学) 计算机科学 卷积神经网络 可视化 情绪分析 人工智能 自然语言处理 深度学习 机器学习 程序设计语言
作者
Daping Xi,Xini Hu,Lin Yang,Nai Yang,Yanzhu Liu,Han Jiang
出处
期刊:Cartography and Geographic Information Science [Taylor & Francis]
卷期号:50 (5): 465-480 被引量:4
标识
DOI:10.1080/15230406.2023.2172081
摘要

The main purpose of the research on map emotional semantics is to describe and express the emotional responses caused by people observing images through computer technology. Nowadays, map application scenarios tend to be diversified, and the increasing demand for emotional information of map users bring new challenges for cartography. However, the lack of evaluation of emotions in the traditional map drawing process makes it difficult for the resulting maps to reach emotional resonance with map users. The core of solving this problem is to quantify the emotional semantics of maps, it can help mapmakers to better understand map emotions and improve user satisfaction. This paper aims to perform the quantification of map emotional semantics by applying transfer learning methods and the efficient computational power of convolutional neural networks (CNN) to establish the correspondence between visual features and emotions. The main contributions of this paper are as follows: (1) a Map Sentiment Dataset containing five discrete emotion categories; (2) three different CNNs (VGG16, VGG19, and InceptionV3) are applied for map sentiment classification task and evaluated by accuracy performance; (3) six different parameter combinations to conduct experiments that would determine the best combination of learning rate and batch size; and (4) the analysis of visual variables that affect the sentiment of a map according to the chart and visualization results. The experimental results reveal that the proposed method has good accuracy performance (around 88%) and that the emotional semantics of maps have some general rules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得20
1秒前
万能图书馆应助Shandongdaxiu采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
chy发布了新的文献求助10
2秒前
yang_keai完成签到,获得积分10
2秒前
hd完成签到,获得积分10
3秒前
3秒前
3秒前
完美世界应助正直的半梅采纳,获得10
4秒前
欢喜的小海豚完成签到,获得积分10
4秒前
5秒前
蛋蛋白完成签到,获得积分20
5秒前
lyy66964193完成签到,获得积分10
6秒前
情怀应助Yanxb采纳,获得10
7秒前
8秒前
JHL完成签到 ,获得积分10
8秒前
董羽佳完成签到,获得积分10
9秒前
小二郎应助boluo666采纳,获得10
9秒前
望北楼主发布了新的文献求助10
9秒前
9秒前
啊啊啊啊跃完成签到,获得积分10
10秒前
宋词完成签到,获得积分10
10秒前
daidai完成签到,获得积分10
13秒前
zhaoyang完成签到 ,获得积分10
13秒前
jj关闭了jj文献求助
13秒前
14秒前
小巧蛋挞发布了新的文献求助10
14秒前
15秒前
佟翠芙完成签到,获得积分10
15秒前
易三木完成签到,获得积分10
17秒前
浑语堂应助李温温采纳,获得10
18秒前
19秒前
20秒前
21秒前
22秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951219
求助须知:如何正确求助?哪些是违规求助? 3496615
关于积分的说明 11083276
捐赠科研通 3227034
什么是DOI,文献DOI怎么找? 1784184
邀请新用户注册赠送积分活动 868252
科研通“疑难数据库(出版商)”最低求助积分说明 801091