Research on map emotional semantics using deep learning approach

语义学(计算机科学) 计算机科学 卷积神经网络 可视化 情绪分析 人工智能 自然语言处理 深度学习 机器学习 程序设计语言
作者
Daping Xi,Xini Hu,Lin Yang,Nai Yang,Yanzhu Liu,Han Jiang
出处
期刊:Cartography and Geographic Information Science [Informa]
卷期号:50 (5): 465-480 被引量:4
标识
DOI:10.1080/15230406.2023.2172081
摘要

The main purpose of the research on map emotional semantics is to describe and express the emotional responses caused by people observing images through computer technology. Nowadays, map application scenarios tend to be diversified, and the increasing demand for emotional information of map users bring new challenges for cartography. However, the lack of evaluation of emotions in the traditional map drawing process makes it difficult for the resulting maps to reach emotional resonance with map users. The core of solving this problem is to quantify the emotional semantics of maps, it can help mapmakers to better understand map emotions and improve user satisfaction. This paper aims to perform the quantification of map emotional semantics by applying transfer learning methods and the efficient computational power of convolutional neural networks (CNN) to establish the correspondence between visual features and emotions. The main contributions of this paper are as follows: (1) a Map Sentiment Dataset containing five discrete emotion categories; (2) three different CNNs (VGG16, VGG19, and InceptionV3) are applied for map sentiment classification task and evaluated by accuracy performance; (3) six different parameter combinations to conduct experiments that would determine the best combination of learning rate and batch size; and (4) the analysis of visual variables that affect the sentiment of a map according to the chart and visualization results. The experimental results reveal that the proposed method has good accuracy performance (around 88%) and that the emotional semantics of maps have some general rules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
ding应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
苏锦霖发布了新的文献求助10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Twonej应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
田様应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
科研助理发布了新的文献求助10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
小王发布了新的文献求助10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
GXL完成签到,获得积分10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
wanci应助Seiswan采纳,获得30
3秒前
Hello应助科研通管家采纳,获得30
3秒前
ding应助科研通管家采纳,获得10
3秒前
wangzhenghua完成签到 ,获得积分10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
大气的氧完成签到,获得积分10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得30
3秒前
Twonej应助科研通管家采纳,获得30
3秒前
3秒前
天天快乐应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927