已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RFG-HELAD: A Robust Fine-Grained Network Traffic Anomaly Detection Model Based on Heterogeneous Ensemble Learning

计算机科学 异常检测 集成学习 数据建模 异常(物理) 人工智能 数据库 物理 凝聚态物理
作者
英輝 田中,Zhiliang Wang,Xingang Shi,Jiahai Yang,Keqin Li
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 5895-5910 被引量:2
标识
DOI:10.1109/tifs.2024.3402439
摘要

Fine-grained attack detection is an important network security task. A large number of machine learning/deep learning( ML/DL) based algorithms have been proposed. However, attacks not present in the training set pose a challenge to the model (openset problem). Further, ML/DL based models face the problem of adversarial attacks. Despite the large amount of work attempting to address these problems, there are still some challenges as follows. First, the open-set problem in fine-grained attack detection is difficult to solve because there is no effective representation of the distribution of unknown attacks. Second, in the open set environment, how the fine-grained attack detection model resists the adversarial attack is a more difficult problem. For example, the presence of unknown attacks poses a challenge for adversarial defense. For these reasons, we propose the RFG-HELAD model, which consists of a K classification model based on deep neural network (DNN) with contrastive learning (CL), and a K + 1 classification model combining a generative adversarial networks (GAN) with two discriminators and deep k -nearest neighbors (Deep kNN). Among them, Deep kNN uses latent features from GAN and contrastive learning as input, which is essentially a distance-based out-of-distribution detection algorithm used to determine unknown attacks. The large category of unknown attacks has been added to the K classification, so it is a K + 1 classification. To further improve the robustness of the RFG-HELAD model, we perform Fourier transform as well as feature fusion on the features, and also conduct adversarial training on the K classification model. Generative adversarial training of our GAN model can implicitly defend against adversarial attack. Experiments show that our model is superior to other state-of-the-art (SOTA) models in the presence of unknown attacks as well as under adversarial attacks. Especially, our model improves the accuracy by at least 18.7% over the corresponding SOTA model with adversarial defense. Further, we discuss the grounded deployment of the model and demonstrate its feasibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江枫渔火完成签到 ,获得积分10
1秒前
没见云发布了新的文献求助10
1秒前
尊敬寒松发布了新的文献求助60
5秒前
6秒前
刻苦的冬易完成签到 ,获得积分10
9秒前
脑洞疼应助f1mike110采纳,获得10
9秒前
Orange应助超级野狼采纳,获得10
9秒前
10秒前
pay发布了新的文献求助10
12秒前
13秒前
细心怀亦完成签到 ,获得积分10
17秒前
sssyyy发布了新的文献求助10
18秒前
Guts发布了新的文献求助10
18秒前
23秒前
zl13332完成签到 ,获得积分10
25秒前
shy完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
111发布了新的文献求助10
30秒前
30秒前
33秒前
34秒前
马宁婧完成签到 ,获得积分10
37秒前
柠木完成签到 ,获得积分10
39秒前
Dr.c发布了新的文献求助10
41秒前
42秒前
小明完成签到,获得积分10
43秒前
Airsjz发布了新的文献求助10
48秒前
48秒前
Jemma完成签到 ,获得积分10
49秒前
轨迹应助小彬采纳,获得10
50秒前
Guts发布了新的文献求助10
51秒前
52秒前
DD发布了新的文献求助10
52秒前
zp19877891完成签到,获得积分10
53秒前
毛舒敏完成签到 ,获得积分10
55秒前
Aris发布了新的文献求助30
56秒前
不许动完成签到 ,获得积分10
56秒前
爆米花应助研究牲采纳,获得10
59秒前
小刘完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387