RFG-HELAD: A Robust Fine-Grained Network Traffic Anomaly Detection Model Based on Heterogeneous Ensemble Learning

计算机科学 异常检测 集成学习 数据建模 异常(物理) 人工智能 数据库 凝聚态物理 物理
作者
英輝 田中,Zhiliang Wang,Xingang Shi,Jiahai Yang,Keqin Li
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 5895-5910 被引量:2
标识
DOI:10.1109/tifs.2024.3402439
摘要

Fine-grained attack detection is an important network security task. A large number of machine learning/deep learning( ML/DL) based algorithms have been proposed. However, attacks not present in the training set pose a challenge to the model (openset problem). Further, ML/DL based models face the problem of adversarial attacks. Despite the large amount of work attempting to address these problems, there are still some challenges as follows. First, the open-set problem in fine-grained attack detection is difficult to solve because there is no effective representation of the distribution of unknown attacks. Second, in the open set environment, how the fine-grained attack detection model resists the adversarial attack is a more difficult problem. For example, the presence of unknown attacks poses a challenge for adversarial defense. For these reasons, we propose the RFG-HELAD model, which consists of a K classification model based on deep neural network (DNN) with contrastive learning (CL), and a K + 1 classification model combining a generative adversarial networks (GAN) with two discriminators and deep k -nearest neighbors (Deep kNN). Among them, Deep kNN uses latent features from GAN and contrastive learning as input, which is essentially a distance-based out-of-distribution detection algorithm used to determine unknown attacks. The large category of unknown attacks has been added to the K classification, so it is a K + 1 classification. To further improve the robustness of the RFG-HELAD model, we perform Fourier transform as well as feature fusion on the features, and also conduct adversarial training on the K classification model. Generative adversarial training of our GAN model can implicitly defend against adversarial attack. Experiments show that our model is superior to other state-of-the-art (SOTA) models in the presence of unknown attacks as well as under adversarial attacks. Especially, our model improves the accuracy by at least 18.7% over the corresponding SOTA model with adversarial defense. Further, we discuss the grounded deployment of the model and demonstrate its feasibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lilianan发布了新的文献求助10
1秒前
2秒前
晴心发布了新的文献求助10
2秒前
爱睡觉的猪完成签到,获得积分20
4秒前
微笑糖豆完成签到 ,获得积分10
4秒前
zzululu2024发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
善学以致用应助季文婷采纳,获得10
9秒前
一颗荔枝完成签到,获得积分10
10秒前
Hello应助晴心采纳,获得10
10秒前
自觉的曼梅完成签到,获得积分20
15秒前
16秒前
密西西比he完成签到,获得积分10
17秒前
王机智完成签到,获得积分10
17秒前
李爱国应助Tigher采纳,获得30
19秒前
19秒前
19秒前
在水一方应助keyantong采纳,获得10
21秒前
愉快的牛氓完成签到 ,获得积分10
21秒前
22秒前
23秒前
23秒前
大脸猫发布了新的文献求助10
24秒前
科研通AI2S应助王机智采纳,获得10
24秒前
烂漫的铭完成签到,获得积分10
25秒前
QQ完成签到,获得积分10
25秒前
26秒前
齐艺茗完成签到,获得积分10
26秒前
27秒前
28秒前
29秒前
30秒前
31秒前
32秒前
季文婷发布了新的文献求助10
32秒前
秘书完成签到,获得积分10
32秒前
都找到了发布了新的文献求助10
33秒前
小胡完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741