RFG-HELAD: A Robust Fine-Grained Network Traffic Anomaly Detection Model Based on Heterogeneous Ensemble Learning

计算机科学 异常检测 集成学习 数据建模 异常(物理) 人工智能 数据库 凝聚态物理 物理
作者
英輝 田中,Zhiliang Wang,Xingang Shi,Jiahai Yang,Keqin Li
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 5895-5910 被引量:2
标识
DOI:10.1109/tifs.2024.3402439
摘要

Fine-grained attack detection is an important network security task. A large number of machine learning/deep learning( ML/DL) based algorithms have been proposed. However, attacks not present in the training set pose a challenge to the model (openset problem). Further, ML/DL based models face the problem of adversarial attacks. Despite the large amount of work attempting to address these problems, there are still some challenges as follows. First, the open-set problem in fine-grained attack detection is difficult to solve because there is no effective representation of the distribution of unknown attacks. Second, in the open set environment, how the fine-grained attack detection model resists the adversarial attack is a more difficult problem. For example, the presence of unknown attacks poses a challenge for adversarial defense. For these reasons, we propose the RFG-HELAD model, which consists of a K classification model based on deep neural network (DNN) with contrastive learning (CL), and a K + 1 classification model combining a generative adversarial networks (GAN) with two discriminators and deep k -nearest neighbors (Deep kNN). Among them, Deep kNN uses latent features from GAN and contrastive learning as input, which is essentially a distance-based out-of-distribution detection algorithm used to determine unknown attacks. The large category of unknown attacks has been added to the K classification, so it is a K + 1 classification. To further improve the robustness of the RFG-HELAD model, we perform Fourier transform as well as feature fusion on the features, and also conduct adversarial training on the K classification model. Generative adversarial training of our GAN model can implicitly defend against adversarial attack. Experiments show that our model is superior to other state-of-the-art (SOTA) models in the presence of unknown attacks as well as under adversarial attacks. Especially, our model improves the accuracy by at least 18.7% over the corresponding SOTA model with adversarial defense. Further, we discuss the grounded deployment of the model and demonstrate its feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罐子发布了新的文献求助10
2秒前
星禾吾发布了新的文献求助10
3秒前
3秒前
4秒前
故意的山河完成签到 ,获得积分10
4秒前
爆米花应助星禾吾采纳,获得10
7秒前
8秒前
affff发布了新的文献求助10
10秒前
布曲完成签到 ,获得积分10
10秒前
10秒前
An发布了新的文献求助10
12秒前
14秒前
舒适以山发布了新的文献求助10
14秒前
小蘑菇应助Mtt采纳,获得10
16秒前
qq完成签到,获得积分10
16秒前
17秒前
19秒前
huangbing123发布了新的文献求助10
20秒前
21秒前
斑比发布了新的文献求助10
22秒前
阿飘应助奶酪鳕鱼饼采纳,获得10
24秒前
24秒前
huangbing123完成签到,获得积分10
25秒前
幼汁汁鬼鬼完成签到,获得积分10
26秒前
深情安青应助JFP采纳,获得10
28秒前
羊毛毛衣完成签到,获得积分10
31秒前
大气惜天完成签到 ,获得积分10
32秒前
32秒前
传奇3应助高兴的万宝路采纳,获得10
33秒前
Mtt发布了新的文献求助10
36秒前
似宁完成签到,获得积分10
39秒前
Hello应助崔文兴采纳,获得10
40秒前
43秒前
Mtt完成签到,获得积分20
47秒前
JFP发布了新的文献求助10
48秒前
48秒前
50秒前
崔文兴发布了新的文献求助10
53秒前
大壮完成签到,获得积分10
55秒前
小二郎应助wuxiaojiejiejie采纳,获得10
57秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350959
求助须知:如何正确求助?哪些是违规求助? 2976530
关于积分的说明 8675382
捐赠科研通 2657669
什么是DOI,文献DOI怎么找? 1455204
科研通“疑难数据库(出版商)”最低求助积分说明 673739
邀请新用户注册赠送积分活动 664225