亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RFG-HELAD: A Robust Fine-Grained Network Traffic Anomaly Detection Model Based on Heterogeneous Ensemble Learning

计算机科学 异常检测 集成学习 数据建模 异常(物理) 人工智能 数据库 凝聚态物理 物理
作者
英輝 田中,Zhiliang Wang,Xingang Shi,Jiahai Yang,Keqin Li
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 5895-5910 被引量:2
标识
DOI:10.1109/tifs.2024.3402439
摘要

Fine-grained attack detection is an important network security task. A large number of machine learning/deep learning( ML/DL) based algorithms have been proposed. However, attacks not present in the training set pose a challenge to the model (openset problem). Further, ML/DL based models face the problem of adversarial attacks. Despite the large amount of work attempting to address these problems, there are still some challenges as follows. First, the open-set problem in fine-grained attack detection is difficult to solve because there is no effective representation of the distribution of unknown attacks. Second, in the open set environment, how the fine-grained attack detection model resists the adversarial attack is a more difficult problem. For example, the presence of unknown attacks poses a challenge for adversarial defense. For these reasons, we propose the RFG-HELAD model, which consists of a K classification model based on deep neural network (DNN) with contrastive learning (CL), and a K + 1 classification model combining a generative adversarial networks (GAN) with two discriminators and deep k -nearest neighbors (Deep kNN). Among them, Deep kNN uses latent features from GAN and contrastive learning as input, which is essentially a distance-based out-of-distribution detection algorithm used to determine unknown attacks. The large category of unknown attacks has been added to the K classification, so it is a K + 1 classification. To further improve the robustness of the RFG-HELAD model, we perform Fourier transform as well as feature fusion on the features, and also conduct adversarial training on the K classification model. Generative adversarial training of our GAN model can implicitly defend against adversarial attack. Experiments show that our model is superior to other state-of-the-art (SOTA) models in the presence of unknown attacks as well as under adversarial attacks. Especially, our model improves the accuracy by at least 18.7% over the corresponding SOTA model with adversarial defense. Further, we discuss the grounded deployment of the model and demonstrate its feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
31秒前
1分钟前
酷波er应助易四夕采纳,获得10
1分钟前
1分钟前
1分钟前
我是老大应助彩色的谷云采纳,获得10
1分钟前
积极盼山发布了新的文献求助10
1分钟前
1分钟前
积极盼山完成签到,获得积分10
1分钟前
jyy应助miurny采纳,获得10
1分钟前
2分钟前
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
易四夕发布了新的文献求助10
3分钟前
愉快谷芹完成签到 ,获得积分10
3分钟前
大个应助易四夕采纳,获得10
4分钟前
嗯嗯嗯完成签到,获得积分10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
4分钟前
Hello应助嗯嗯嗯采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
budingman发布了新的文献求助30
6分钟前
6分钟前
6分钟前
用眼睛吃饭的人完成签到,获得积分10
6分钟前
隐形曼青应助科研通管家采纳,获得10
6分钟前
Jasper应助科研通管家采纳,获得10
6分钟前
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968492
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167214
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638