Cyclic behavior of laminated bio-based connections with slotted-in steel plates: Genetic algorithm, deterministic neural network-based model parameter identification, and uncertainty quantification

灵敏度(控制系统) 人工神经网络 遗传算法 算法 刚度 有限元法 结构工程 工程类 张力(地质) 算法的概率分析 概率逻辑 计算机科学 压缩(物理) 材料科学 人工智能 机器学习 复合材料 电子工程
作者
Da Shi,Yongjia Xu,Cristoforo Demartino,Yan Xiao,B. F. Spencer
出处
期刊:Engineering Structures [Elsevier]
卷期号:310: 118114-118114 被引量:1
标识
DOI:10.1016/j.engstruct.2024.118114
摘要

To support more sustainable construction, this paper experimentally investigates the cyclic behavior of laminated timber (Laminated Veneer Lumber (LVL)) and glubam (Glue Laminated Bamboo) connections with slotted-in steel plates in terms of experimental test, numerical simulations and parameter identification. Experimental tests included eight different configurations: two materials (LVL and glubam), two bolt diameters (8 and 10 mm), and one or two bolts. Two different cyclic-loading protocols were applied for each type of connection: only tension and tension/compression. The observed behavior is then compared to a finite element model developed in OpenSeesPy, which takes into account factors such as sliding, contact, pinching, cyclic stiffness, and strength degradation. To identify the best set of parameters for the model, three different approaches are considered: genetic algorithm, fast deterministic neural network, and probabilistic Bayesian method. First, the model identification is carried out by means of a genetic algorithm-based optimization. The parameter-identification results are evaluated in terms of elastic stiffness, yielding point, and ductility. Next, a sensitivity analysis is performed to determine the significance of the parameters, and an innovative approach combining neural network and sensitivity analysis is proposed for fast and preliminary parameter identification. Then, probabilistic Bayesian identification is employed to calculate the posterior distribution of the model parameters identified and the confidence bounds of the estimated response. Finally, different model identification parameters are compared and suggestions for algorithm selection are provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
浮曳完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI6应助龙觅星峰采纳,获得10
2秒前
英姑应助付品聪采纳,获得10
3秒前
领导范儿应助攘攘采纳,获得10
4秒前
超帅蓝血完成签到,获得积分10
4秒前
4秒前
凌擎宇完成签到,获得积分10
4秒前
5秒前
常温可乐完成签到 ,获得积分10
5秒前
赵安安完成签到,获得积分10
5秒前
赘婿应助威武的雁易采纳,获得10
6秒前
斯文败类应助AAA采纳,获得10
6秒前
6秒前
7秒前
7秒前
清秀冰岚完成签到,获得积分10
9秒前
9秒前
10秒前
小鲨鱼发布了新的文献求助10
10秒前
10秒前
亭瞳发布了新的文献求助10
10秒前
大模型应助勤恳雅香采纳,获得10
10秒前
灵巧延恶发布了新的文献求助10
11秒前
莫茹发布了新的文献求助10
11秒前
12秒前
12秒前
薄荷完成签到,获得积分10
12秒前
付品聪完成签到,获得积分20
12秒前
香蕉觅云应助小玲子采纳,获得10
13秒前
超帅蓝血发布了新的文献求助10
13秒前
付品聪发布了新的文献求助10
15秒前
Miao发布了新的文献求助10
16秒前
spring079完成签到,获得积分10
16秒前
脑洞疼应助禧壹采纳,获得10
17秒前
Hello应助AAA采纳,获得10
18秒前
18秒前
852应助能干储采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643591
求助须知:如何正确求助?哪些是违规求助? 4761418
关于积分的说明 15021120
捐赠科研通 4801844
什么是DOI,文献DOI怎么找? 2567087
邀请新用户注册赠送积分活动 1524843
关于科研通互助平台的介绍 1484403