Cyclic behavior of laminated bio-based connections with slotted-in steel plates: Genetic algorithm, deterministic neural network-based model parameter identification, and uncertainty quantification

灵敏度(控制系统) 人工神经网络 遗传算法 算法 刚度 有限元法 结构工程 工程类 张力(地质) 算法的概率分析 概率逻辑 计算机科学 压缩(物理) 材料科学 人工智能 机器学习 复合材料 电子工程
作者
Da Shi,Yongjia Xu,Cristoforo Demartino,Yan Xiao,B. F. Spencer
出处
期刊:Engineering Structures [Elsevier]
卷期号:310: 118114-118114 被引量:1
标识
DOI:10.1016/j.engstruct.2024.118114
摘要

To support more sustainable construction, this paper experimentally investigates the cyclic behavior of laminated timber (Laminated Veneer Lumber (LVL)) and glubam (Glue Laminated Bamboo) connections with slotted-in steel plates in terms of experimental test, numerical simulations and parameter identification. Experimental tests included eight different configurations: two materials (LVL and glubam), two bolt diameters (8 and 10 mm), and one or two bolts. Two different cyclic-loading protocols were applied for each type of connection: only tension and tension/compression. The observed behavior is then compared to a finite element model developed in OpenSeesPy, which takes into account factors such as sliding, contact, pinching, cyclic stiffness, and strength degradation. To identify the best set of parameters for the model, three different approaches are considered: genetic algorithm, fast deterministic neural network, and probabilistic Bayesian method. First, the model identification is carried out by means of a genetic algorithm-based optimization. The parameter-identification results are evaluated in terms of elastic stiffness, yielding point, and ductility. Next, a sensitivity analysis is performed to determine the significance of the parameters, and an innovative approach combining neural network and sensitivity analysis is proposed for fast and preliminary parameter identification. Then, probabilistic Bayesian identification is employed to calculate the posterior distribution of the model parameters identified and the confidence bounds of the estimated response. Finally, different model identification parameters are compared and suggestions for algorithm selection are provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Oscillator发布了新的文献求助10
1秒前
1秒前
Criminology34应助陈小明采纳,获得10
1秒前
草帽完成签到,获得积分10
2秒前
安琪发布了新的文献求助10
2秒前
负责玉米发布了新的文献求助30
3秒前
ronll发布了新的文献求助10
4秒前
七里海完成签到,获得积分10
5秒前
科研通AI6应助安妮采纳,获得10
5秒前
芝士椰果发布了新的文献求助10
5秒前
记得笑发布了新的文献求助10
6秒前
帅帅完成签到,获得积分10
6秒前
甜蜜的大象完成签到 ,获得积分10
6秒前
风清扬发布了新的文献求助10
6秒前
6秒前
7秒前
顺利秋灵完成签到,获得积分20
8秒前
8秒前
LZS完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
科研锐发布了新的文献求助10
11秒前
zws发布了新的文献求助10
12秒前
张艺馨完成签到,获得积分10
12秒前
飘逸太英完成签到,获得积分20
12秒前
12秒前
小鲨鱼完成签到,获得积分20
13秒前
善学以致用应助记得笑采纳,获得10
13秒前
14秒前
一指墨完成签到,获得积分10
14秒前
欢喜完成签到,获得积分10
15秒前
可乐可口完成签到,获得积分10
15秒前
cmu1h发布了新的文献求助10
15秒前
16秒前
17秒前
糕糕完成签到,获得积分20
18秒前
18秒前
Zirong发布了新的文献求助10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277