Cyclic behavior of laminated bio-based connections with slotted-in steel plates: Genetic algorithm, deterministic neural network-based model parameter identification, and uncertainty quantification

灵敏度(控制系统) 人工神经网络 遗传算法 算法 刚度 有限元法 结构工程 工程类 张力(地质) 算法的概率分析 概率逻辑 计算机科学 压缩(物理) 材料科学 人工智能 机器学习 复合材料 电子工程
作者
Da Shi,Yongjia Xu,Cristoforo Demartino,Yan Xiao,B. F. Spencer
出处
期刊:Engineering Structures [Elsevier]
卷期号:310: 118114-118114 被引量:1
标识
DOI:10.1016/j.engstruct.2024.118114
摘要

To support more sustainable construction, this paper experimentally investigates the cyclic behavior of laminated timber (Laminated Veneer Lumber (LVL)) and glubam (Glue Laminated Bamboo) connections with slotted-in steel plates in terms of experimental test, numerical simulations and parameter identification. Experimental tests included eight different configurations: two materials (LVL and glubam), two bolt diameters (8 and 10 mm), and one or two bolts. Two different cyclic-loading protocols were applied for each type of connection: only tension and tension/compression. The observed behavior is then compared to a finite element model developed in OpenSeesPy, which takes into account factors such as sliding, contact, pinching, cyclic stiffness, and strength degradation. To identify the best set of parameters for the model, three different approaches are considered: genetic algorithm, fast deterministic neural network, and probabilistic Bayesian method. First, the model identification is carried out by means of a genetic algorithm-based optimization. The parameter-identification results are evaluated in terms of elastic stiffness, yielding point, and ductility. Next, a sensitivity analysis is performed to determine the significance of the parameters, and an innovative approach combining neural network and sensitivity analysis is proposed for fast and preliminary parameter identification. Then, probabilistic Bayesian identification is employed to calculate the posterior distribution of the model parameters identified and the confidence bounds of the estimated response. Finally, different model identification parameters are compared and suggestions for algorithm selection are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Llzaj完成签到,获得积分10
3秒前
qll发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
gzgljh完成签到,获得积分10
5秒前
车佳莹完成签到,获得积分10
5秒前
豆豆应助Pia唧采纳,获得10
5秒前
5秒前
英俊的铭应助pengyang采纳,获得10
5秒前
LALALA完成签到 ,获得积分10
6秒前
6秒前
未命名发布了新的文献求助10
6秒前
坦率问晴发布了新的文献求助10
7秒前
stop here发布了新的文献求助10
7秒前
8秒前
LRX发布了新的文献求助20
8秒前
Cloud完成签到,获得积分10
10秒前
典雅碧空发布了新的文献求助10
10秒前
李繁蕊完成签到,获得积分10
10秒前
10秒前
宁安发布了新的文献求助10
11秒前
yun发布了新的文献求助10
11秒前
Derek0203完成签到,获得积分10
11秒前
阿雪完成签到,获得积分10
11秒前
大个应助潇湘阁我爱吃采纳,获得10
12秒前
12秒前
蝙蝠发布了新的文献求助50
12秒前
乐乐应助mm采纳,获得10
13秒前
13秒前
13秒前
星辰大海应助Felly采纳,获得10
14秒前
鱼鱼完成签到,获得积分10
14秒前
冰淇琳完成签到,获得积分10
14秒前
cucumber发布了新的文献求助10
15秒前
15秒前
李爱国应助苗条砖家采纳,获得10
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135273
求助须知:如何正确求助?哪些是违规求助? 2786262
关于积分的说明 7776475
捐赠科研通 2442202
什么是DOI,文献DOI怎么找? 1298495
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847