Cyclic behavior of laminated bio-based connections with slotted-in steel plates: Genetic algorithm, deterministic neural network-based model parameter identification, and uncertainty quantification

灵敏度(控制系统) 人工神经网络 遗传算法 算法 刚度 有限元法 结构工程 工程类 张力(地质) 算法的概率分析 概率逻辑 计算机科学 压缩(物理) 材料科学 人工智能 机器学习 复合材料 电子工程
作者
Da Shi,Yongjia Xu,Cristoforo Demartino,Yan Xiao,B. F. Spencer
出处
期刊:Engineering Structures [Elsevier]
卷期号:310: 118114-118114 被引量:1
标识
DOI:10.1016/j.engstruct.2024.118114
摘要

To support more sustainable construction, this paper experimentally investigates the cyclic behavior of laminated timber (Laminated Veneer Lumber (LVL)) and glubam (Glue Laminated Bamboo) connections with slotted-in steel plates in terms of experimental test, numerical simulations and parameter identification. Experimental tests included eight different configurations: two materials (LVL and glubam), two bolt diameters (8 and 10 mm), and one or two bolts. Two different cyclic-loading protocols were applied for each type of connection: only tension and tension/compression. The observed behavior is then compared to a finite element model developed in OpenSeesPy, which takes into account factors such as sliding, contact, pinching, cyclic stiffness, and strength degradation. To identify the best set of parameters for the model, three different approaches are considered: genetic algorithm, fast deterministic neural network, and probabilistic Bayesian method. First, the model identification is carried out by means of a genetic algorithm-based optimization. The parameter-identification results are evaluated in terms of elastic stiffness, yielding point, and ductility. Next, a sensitivity analysis is performed to determine the significance of the parameters, and an innovative approach combining neural network and sensitivity analysis is proposed for fast and preliminary parameter identification. Then, probabilistic Bayesian identification is employed to calculate the posterior distribution of the model parameters identified and the confidence bounds of the estimated response. Finally, different model identification parameters are compared and suggestions for algorithm selection are provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三次方发布了新的文献求助10
刚刚
刚刚
1秒前
Redemption完成签到,获得积分10
1秒前
SciGPT应助严yee采纳,获得10
1秒前
香蕉觅云应助mxm采纳,获得10
1秒前
lalala发布了新的文献求助10
2秒前
赵媛发布了新的文献求助10
2秒前
2秒前
4秒前
科研通AI6.1应助zss采纳,获得10
4秒前
qcj发布了新的文献求助10
4秒前
5秒前
boyue完成签到,获得积分10
6秒前
An完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
无解发布了新的文献求助10
7秒前
归尘发布了新的文献求助10
8秒前
三次方完成签到,获得积分10
8秒前
8秒前
大个应助救驾来迟采纳,获得10
10秒前
11秒前
11秒前
immunity完成签到,获得积分10
11秒前
11秒前
Akim应助An采纳,获得10
12秒前
12秒前
zofgk发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
寒战发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
丘比特应助mo采纳,获得10
16秒前
16秒前
yyy完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743602
求助须知:如何正确求助?哪些是违规求助? 5414972
关于积分的说明 15348028
捐赠科研通 4884256
什么是DOI,文献DOI怎么找? 2625707
邀请新用户注册赠送积分活动 1574549
关于科研通互助平台的介绍 1531467