亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Seizure Detection Method Based on the Feature Fusion of Multimodal Physiological Signals

计算机科学 模式识别(心理学) 可穿戴计算机 人工智能 特征(语言学) 信号(编程语言) 哲学 语言学 程序设计语言 嵌入式系统
作者
Duanpo Wu,Wei Jun,Pierre‐Paul Vidal,Danping Wang,Yixuan Yuan,Jiuwen Cao,Tiejia Jiang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (16): 27545-27556 被引量:1
标识
DOI:10.1109/jiot.2024.3398418
摘要

Seizure detection is traditionally done using video/electroencephalography monitoring, but for out-of-hospital patients, this method is costly. In recent years, portable device to detect seizures gains attention. In this paper, multimodal signals collected by portable devices are studied, and a seizure detection algorithm is proposed based on adaptive multi-bit local differential ternary pattern (MLDTP). This algorithm is used for detecting seizure period and inter-seizure period. Traditional local binary pattern has certain limitations in describing one-dimensional time series signals. It can only describe two types of structures in signals: Rising structure and falling structure, making the signal patterns overly monotonous and not conducive to classification tasks. To address this issue, this paper introduces two additional structures, slowly rising structure and slowly falling structure, into the signal description using MLDTP method. This method constructs multi-bit neighboring relationships of the signals, and adaptively selects the optimal MLDTP parameters for different modalities using the Archimedes optimization algorithm (AOA). Additionally, this paper extensively discusses a multimodal signal fusion strategy, mapping features of different modal signals to the same feature space through the MLDTP algorithm to achieve information complementarity. Long-term recorded data from 18 patients were collected using the wearable device Biovital P1, with 13 cases from the Children's Hospital affiliated with Children's Hospital, Zhejiang University School of Medicine, and 5 cases from the fourth Affiliated Hospital of Anhui Medical University. The dataset underwent five-fold cross-validation, resulting in average accuracy, precision, sensitivity and F1 score of 96.81%, 98.55%, 95.24% and 96.87%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐乐乐乐乐完成签到,获得积分10
2秒前
14秒前
weining完成签到,获得积分10
18秒前
楠楠2001完成签到 ,获得积分10
37秒前
伤心小肥子完成签到,获得积分10
1分钟前
嗯哼应助科研通管家采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
嗯哼应助科研通管家采纳,获得40
1分钟前
1分钟前
xiaoxiao发布了新的文献求助10
1分钟前
思源应助xiaoxiao采纳,获得10
2分钟前
Jessica英语好完成签到 ,获得积分10
2分钟前
上官若男应助liyi2022采纳,获得30
2分钟前
2分钟前
liyi2022发布了新的文献求助30
2分钟前
早晚完成签到 ,获得积分10
3分钟前
古月完成签到,获得积分10
3分钟前
嗯哼应助科研通管家采纳,获得20
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
嗯哼应助科研通管家采纳,获得20
3分钟前
七熵完成签到 ,获得积分10
3分钟前
爆米花应助liyi2022采纳,获得10
3分钟前
caca完成签到,获得积分10
3分钟前
茉莉发布了新的文献求助10
3分钟前
4分钟前
清浅发布了新的文献求助30
4分钟前
4分钟前
科研通AI2S应助信仰采纳,获得10
4分钟前
年年完成签到,获得积分10
5分钟前
嗯哼应助科研通管家采纳,获得20
5分钟前
5分钟前
NS完成签到,获得积分10
5分钟前
GJJ完成签到 ,获得积分10
6分钟前
6分钟前
zhl完成签到,获得积分10
6分钟前
GUO完成签到 ,获得积分10
6分钟前
liyi2022发布了新的文献求助10
6分钟前
_hyl完成签到 ,获得积分10
6分钟前
恩對完成签到,获得积分10
6分钟前
研友_VZG7GZ应助甜甜瑾瑜采纳,获得10
6分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3252974
求助须知:如何正确求助?哪些是违规求助? 2895497
关于积分的说明 8286979
捐赠科研通 2564337
什么是DOI,文献DOI怎么找? 1392302
科研通“疑难数据库(出版商)”最低求助积分说明 652122
邀请新用户注册赠送积分活动 629389