偏最小二乘回归
特征选择
Boosting(机器学习)
化学计量学
水分
梯度升压
近红外光谱
核(代数)
特征(语言学)
回归
交叉验证
人工智能
模式识别(心理学)
生物系统
计算机科学
数学
随机森林
机器学习
统计
化学
生物
组合数学
哲学
语言学
神经科学
有机化学
作者
Runyu Zheng,Yuyao Jia,Chidanand Ullagaddi,Cody W. Allen,Kent D. Rausch,Vijay Singh,James C. Schnable,Mohammed Kamruzzaman
出处
期刊:Food Chemistry
[Elsevier BV]
日期:2024-06-12
卷期号:456: 140062-140062
被引量:14
标识
DOI:10.1016/j.foodchem.2024.140062
摘要
Differences in moisture and protein content impact both nutritional value and processing efficiency of corn kernels. Near-infrared (NIR) spectroscopy can be used to estimate kernel composition, but models trained on a few environments may underestimate error rates and bias. We assembled corn samples from diverse international environments and used NIR with chemometrics and partial least squares regression (PLSR) to determine moisture and protein. The potential of five feature selection methods to improve prediction accuracy was assessed by extracting sensitive wavelengths. Gradient boosting machines (GBMs), particularly CatBoost and LightGBM, were found to effectively select crucial wavelengths for moisture (1409, 1900, 1908, 1932, 1953, 2174 nm) and protein (887, 1212, 1705, 1891, 2097, 2456 nm). SHAP plots highlighted significant wavelength contributions to model prediction. These results illustrate GBMs' effectiveness in feature engineering for agricultural and food sector applications, including developing multi-country global calibration models for moisture and protein in corn kernels.
科研通智能强力驱动
Strongly Powered by AbleSci AI