Engineering Escherichia coli Pyruvate Metabolism to Generate Noncanonical Reducing Power

辅因子 大肠杆菌 烟酰胺单核苷酸 烟酰胺腺嘌呤二核苷酸 NAD+激酶 化学 生物化学 生物制造 代谢工程 氧化还原 丙酮酸脱氢酶复合物 脱氢酶 生物 有机化学 基因 遗传学
作者
Derek Aspacio,Emma Luu,Suphanida Worakaensai,Youtian Cui,Sarah Maxel,Edward J. King,Raine Hagerty,Alexander L. Chu,Derek Minn,Justin B. Siegel,Han Li
出处
期刊:ACS Catalysis 卷期号:14 (13): 9776-9784
标识
DOI:10.1021/acscatal.4c02131
摘要

The future of biomanufacturing is dependent on rewiring biological systems to establish an alternative approach to our current chemical industries. However, a key limitation in biomanufacturing is that desired processes must rely on the same two redox cofactors as natural metabolism, nicotinamide adenine dinucleotide (phosphate) NAD(P)+, to shuttle electrons energy. Thus, competition of resources with natural reactions within host cells is nearly unavoidable. One strategy to overcome redox cofactor resource competition is the implementation of a third, noncanonical redox cofactor, such as nicotinamide mononucleotide (NMN+), which supports specific electron delivery to desired reactions. Here, we redesign the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) to specially utilize NMN+ by engineering its E3 subunit (Lpd). Through rational design, we discover a cofactor promiscuous variant Lpd Penta (G182R-I186T-M206E-E205W-I271L) with an ∼2500-fold improvement in NMN+ apparent turnover number. We tailor the enzyme to exclusively use NMN+ through computational design and construct Lpd Ortho (Penta-R292E-Q317L) with a 2.4 × 105-fold cofactor specificity improvement toward NMN+ compared to the wild type. Molecular simulation allowed tracking of the cofactor's alternative binding poses that emerge as the enzyme evolves, which was crucial to precisely guide engineering. We demonstrate that the engineered NMN+-specific PDHc functions in E. coli cells to sustain the life-essential pyruvate metabolism, in an NMN+-dependent manner. These results expand the available NMN+ toolkit to include the high flux and nearly irreversible reaction of PDHc as an insulated electron source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助瘦瘦天奇采纳,获得10
1秒前
Cherry发布了新的文献求助10
1秒前
2秒前
2秒前
乐唔发布了新的文献求助10
3秒前
Luo发布了新的文献求助10
4秒前
打打应助tttck采纳,获得10
7秒前
luck发布了新的文献求助10
7秒前
8秒前
今后应助酒仙采纳,获得10
8秒前
霸气若菱发布了新的文献求助10
8秒前
爱静静应助开放的大侠采纳,获得10
8秒前
上官若男应助告铭采纳,获得10
8秒前
君齐发布了新的文献求助10
9秒前
Ava应助一菩提采纳,获得10
9秒前
Cherry完成签到,获得积分20
10秒前
小大夫发布了新的文献求助10
10秒前
10秒前
赵李梅发布了新的文献求助10
10秒前
make217完成签到 ,获得积分10
10秒前
烟花应助DamonChen采纳,获得10
11秒前
健康的犀牛完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
SYLH应助纯真雪一采纳,获得10
12秒前
爱静静应助HY采纳,获得10
13秒前
14秒前
xia xianxin完成签到,获得积分20
14秒前
15秒前
yx_cheng应助早睡早起采纳,获得10
15秒前
15秒前
调研昵称发布了新的文献求助10
15秒前
MXY完成签到,获得积分10
16秒前
Luo完成签到,获得积分10
16秒前
16秒前
科研通AI5应助linst5E采纳,获得10
18秒前
田然发布了新的文献求助10
18秒前
科研通AI5应助橙汁椰子汁采纳,获得30
19秒前
酒仙发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543997
求助须知:如何正确求助?哪些是违规求助? 3121198
关于积分的说明 9346129
捐赠科研通 2819283
什么是DOI,文献DOI怎么找? 1550110
邀请新用户注册赠送积分活动 722375
科研通“疑难数据库(出版商)”最低求助积分说明 713174