Development and validation of AI models using LR and LightGBM for predicting distant metastasis in breast cancer: a dual-center study

乳腺癌 医学 转移 癌症 人工智能 肿瘤科 内科学 计算机科学
作者
Wenhai Zhang,Yang Tan,Zhen Huang,Qixing Tan,Yuemei Zhang,Binjie Chen,Changyuan Wei
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1409273
摘要

Objective This study aims to develop an artificial intelligence model utilizing clinical blood markers, ultrasound data, and breast biopsy pathological information to predict the distant metastasis in breast cancer patients. Methods Data from two medical centers were utilized, Clinical blood markers, ultrasound data, and breast biopsy pathological information were separately extracted and selected. Feature dimensionality reduction was performed using Spearman correlation and LASSO regression. Predictive models were constructed using LR and LightGBM machine learning algorithms and validated on internal and external validation sets. Feature correlation analysis was conducted for both models. Results The LR model achieved AUC values of 0.892, 0.816, and 0.817 for the training, internal validation, and external validation cohorts, respectively. The LightGBM model achieved AUC values of 0.971, 0.861, and 0.890 for the same cohorts, respectively. Clinical decision curve analysis showed a superior net benefit of the LightGBM model over the LR model in predicting distant metastasis in breast cancer. Key features identified included creatine kinase isoenzyme (CK-MB) and alpha-hydroxybutyrate dehydrogenase. Conclusion This study developed an artificial intelligence model using clinical blood markers, ultrasound data, and pathological information to identify distant metastasis in breast cancer patients. The LightGBM model demonstrated superior predictive accuracy and clinical applicability, suggesting it as a promising tool for early diagnosis of distant metastasis in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gaoyi12356发布了新的文献求助10
1秒前
妥妥酱完成签到,获得积分10
1秒前
科研皇发布了新的文献求助10
1秒前
自信号厂完成签到 ,获得积分10
1秒前
xyf完成签到,获得积分10
1秒前
CipherSage应助沙糖桔采纳,获得10
2秒前
祺志鲜明完成签到,获得积分10
3秒前
余闻问完成签到,获得积分10
3秒前
lois_ni完成签到,获得积分10
3秒前
LEEJ完成签到,获得积分10
4秒前
美好灵寒完成签到 ,获得积分10
5秒前
5秒前
经友菱发布了新的文献求助10
5秒前
5秒前
伯赏元彤完成签到,获得积分10
6秒前
6秒前
热血马儿完成签到,获得积分10
7秒前
7秒前
wanci应助来日方长采纳,获得10
8秒前
8秒前
呆瓜不会飞完成签到,获得积分10
10秒前
10秒前
10秒前
JamesPei应助pkubest采纳,获得10
11秒前
00完成签到,获得积分10
11秒前
成熟稳重痴情完成签到,获得积分10
11秒前
myz完成签到,获得积分10
13秒前
14秒前
冷傲初夏完成签到,获得积分10
14秒前
15秒前
16秒前
tian完成签到,获得积分10
17秒前
重要的板凳完成签到,获得积分10
18秒前
斯文败类应助赵寇采纳,获得10
18秒前
丽颖发布了新的文献求助10
19秒前
所所应助黎明采纳,获得10
20秒前
英俊的铭应助认真的不评采纳,获得10
20秒前
20秒前
eso完成签到,获得积分10
21秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168119
求助须知:如何正确求助?哪些是违规求助? 2819492
关于积分的说明 7926815
捐赠科研通 2479378
什么是DOI,文献DOI怎么找? 1320762
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458