Metabolomic biomarkers for benign conditions and malignant ovarian cancer: Advancing early diagnosis

代谢组学 卵巢癌 医学 癌症 肿瘤科 内科学 生物信息学 生物
作者
Wenjia Zhang,Zhizhen Lai,Xiaoyue Liang,Zhonghao Yuan,Yize Yuan,Zhigang Wang,Peng Peng,Liangyu Xia,Xiaolin Yang,Zhili Li
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:560: 119734-119734 被引量:3
标识
DOI:10.1016/j.cca.2024.119734
摘要

Ovarian cancer (OC) is a major global cause of death among gynecological cancers, with a high mortality rate. Early diagnosis, distinguishing between benign conditions and early malignant OC forms, is vital for successful treatment. This research investigates serum metabolites to find diagnostic biomarkers for early OC identification. Metabolomic profiles derived from the serum of 60 patients with benign conditions and 60 patients with malignant OC were examined using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Comparative analysis revealed differential metabolites linked to OC, aiding biomarker identification for early-diagnosis of OC via machine learning features. The predictive ability of these biomarkers was evaluated against the traditional biomarker, cancer antigen 125 (CA125). 84 differential metabolites were identified, including 2-Thiothiazolidine-4-carboxylic acid (TTCA), Methionyl-Cysteine, and Citrulline that could serve as potential biomarkers to identify benign conditions and malignant OC. In the diagnosis of early-stage OC, the area under the curve (AUC) for Citrulline was 0.847 (95 % Confidence Interval (CI): 0.719–0.974), compared to 0.770 (95 % CI: 0.596–0.944) for TTCA, and 0.754 for Methionine-Cysteine (95 % CI: 0.589–0.919). These metabolites demonstrate a superior diagnostic capability relative to CA125, which has an AUC of 0.689 (95 % CI: 0.448–0.931). Among these biomarkers, Citrulline stands out as the most promising. Additionally, in the diagnosis of benign conditions and malignant OC, using logistic regression to combine potential biomarkers with CA125 has an AUC of 0.987 (95 % CI: 0.9708–1) has been proven to be more effective than relying solely on the traditional biomarker CA125 with an AUC of 0.933 (95 % CI: 0.870–0.996). Furthermore, among all the differential metabolites, lipid metabolites dominate, significantly impacting glycerophospholipid metabolism pathway. The discovered serum metabolite biomarkers demonstrate excellent diagnostic performance for distinguishing between benign conditions and malignant OC and for early diagnosis of malignant OC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实水之发布了新的文献求助10
刚刚
陈露佳发布了新的文献求助10
1秒前
1秒前
牛油果发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助科研爱好者采纳,获得10
1秒前
木木三完成签到 ,获得积分10
2秒前
优秀的小蚂蚁完成签到,获得积分10
2秒前
搜集达人应助sikang采纳,获得10
3秒前
3秒前
llm19完成签到,获得积分10
3秒前
sssjjjxx完成签到,获得积分20
3秒前
imi发布了新的文献求助10
4秒前
天天快乐应助Koi采纳,获得10
4秒前
谢谢大佬完成签到,获得积分10
5秒前
深情安青应助夏沫星星球采纳,获得10
5秒前
keanu发布了新的文献求助10
6秒前
6秒前
木木三关注了科研通微信公众号
6秒前
华仔应助Zzzz采纳,获得10
6秒前
害羞的衫完成签到,获得积分10
6秒前
7秒前
拼搏迎梦完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
9秒前
10秒前
tangcan发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
科研通AI6.1应助阿悦采纳,获得30
12秒前
13秒前
阿Q完成签到,获得积分10
14秒前
南桃发布了新的文献求助10
14秒前
14秒前
陌人归发布了新的文献求助10
14秒前
搜集达人应助彩虹小马采纳,获得10
14秒前
好结局完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762181
求助须知:如何正确求助?哪些是违规求助? 5534311
关于积分的说明 15402288
捐赠科研通 4898393
什么是DOI,文献DOI怎么找? 2634850
邀请新用户注册赠送积分活动 1583000
关于科研通互助平台的介绍 1538201