Metabolomic biomarkers for benign conditions and malignant ovarian cancer: Advancing early diagnosis

代谢组学 卵巢癌 医学 癌症 肿瘤科 内科学 生物信息学 生物
作者
Wenjia Zhang,Zhizhen Lai,Xiaoyue Liang,Zhonghao Yuan,Yize Yuan,Zhigang Wang,Peng Peng,Liangyu Xia,Xiaolin Yang,Zhili Li
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:560: 119734-119734 被引量:3
标识
DOI:10.1016/j.cca.2024.119734
摘要

Ovarian cancer (OC) is a major global cause of death among gynecological cancers, with a high mortality rate. Early diagnosis, distinguishing between benign conditions and early malignant OC forms, is vital for successful treatment. This research investigates serum metabolites to find diagnostic biomarkers for early OC identification. Metabolomic profiles derived from the serum of 60 patients with benign conditions and 60 patients with malignant OC were examined using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Comparative analysis revealed differential metabolites linked to OC, aiding biomarker identification for early-diagnosis of OC via machine learning features. The predictive ability of these biomarkers was evaluated against the traditional biomarker, cancer antigen 125 (CA125). 84 differential metabolites were identified, including 2-Thiothiazolidine-4-carboxylic acid (TTCA), Methionyl-Cysteine, and Citrulline that could serve as potential biomarkers to identify benign conditions and malignant OC. In the diagnosis of early-stage OC, the area under the curve (AUC) for Citrulline was 0.847 (95 % Confidence Interval (CI): 0.719–0.974), compared to 0.770 (95 % CI: 0.596–0.944) for TTCA, and 0.754 for Methionine-Cysteine (95 % CI: 0.589–0.919). These metabolites demonstrate a superior diagnostic capability relative to CA125, which has an AUC of 0.689 (95 % CI: 0.448–0.931). Among these biomarkers, Citrulline stands out as the most promising. Additionally, in the diagnosis of benign conditions and malignant OC, using logistic regression to combine potential biomarkers with CA125 has an AUC of 0.987 (95 % CI: 0.9708–1) has been proven to be more effective than relying solely on the traditional biomarker CA125 with an AUC of 0.933 (95 % CI: 0.870–0.996). Furthermore, among all the differential metabolites, lipid metabolites dominate, significantly impacting glycerophospholipid metabolism pathway. The discovered serum metabolite biomarkers demonstrate excellent diagnostic performance for distinguishing between benign conditions and malignant OC and for early diagnosis of malignant OC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fortune完成签到,获得积分10
1秒前
小波完成签到,获得积分10
1秒前
2秒前
歇洛克完成签到,获得积分20
2秒前
2秒前
xun完成签到,获得积分20
2秒前
涵青夏完成签到,获得积分10
3秒前
情怀应助Rrr采纳,获得10
3秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
歇洛克发布了新的文献求助10
6秒前
怡然的乘风完成签到,获得积分10
6秒前
天天小女孩完成签到,获得积分10
6秒前
无聊的千青关注了科研通微信公众号
7秒前
8秒前
研友_VZG7GZ应助森源海采纳,获得10
8秒前
8秒前
9秒前
支雨泽发布了新的文献求助10
9秒前
玺青一生完成签到 ,获得积分10
9秒前
9秒前
15966014069发布了新的文献求助20
9秒前
水123发布了新的文献求助10
10秒前
天真醉波完成签到 ,获得积分10
10秒前
11秒前
1111发布了新的文献求助10
11秒前
湖以完成签到 ,获得积分10
11秒前
jie完成签到,获得积分10
12秒前
llyu玉发布了新的文献求助10
12秒前
zzr完成签到 ,获得积分10
13秒前
xyc完成签到,获得积分10
14秒前
善学以致用应助支雨泽采纳,获得10
14秒前
14秒前
张先生发布了新的文献求助10
14秒前
14秒前
ivying0209完成签到,获得积分10
15秒前
夜琉璃应助苯环超人采纳,获得30
15秒前
15秒前
Rrr发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603597
求助须知:如何正确求助?哪些是违规求助? 4688619
关于积分的说明 14854949
捐赠科研通 4694087
什么是DOI,文献DOI怎么找? 2540895
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806