Metabolomic biomarkers for benign conditions and malignant ovarian cancer: Advancing early diagnosis

代谢组学 卵巢癌 医学 癌症 肿瘤科 内科学 生物信息学 生物
作者
Wenjia Zhang,Zhizhen Lai,Xiaoyue Liang,Zhonghao Yuan,Yize Yuan,Zhigang Wang,Peng Peng,Liangyu Xia,Xiaolin Yang,Zhili Li
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:560: 119734-119734
标识
DOI:10.1016/j.cca.2024.119734
摘要

Ovarian cancer (OC) is a major global cause of death among gynecological cancers, with a high mortality rate. Early diagnosis, distinguishing between benign conditions and early malignant OC forms, is vital for successful treatment. This research investigates serum metabolites to find diagnostic biomarkers for early OC identification. Metabolomic profiles derived from the serum of 60 patients with benign conditions and 60 patients with malignant OC were examined using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Comparative analysis revealed differential metabolites linked to OC, aiding biomarker identification for early-diagnosis of OC via machine learning features. The predictive ability of these biomarkers was evaluated against the traditional biomarker, cancer antigen 125 (CA125). 84 differential metabolites were identified, including 2-Thiothiazolidine-4-carboxylic acid (TTCA), Methionyl-Cysteine, and Citrulline that could serve as potential biomarkers to identify benign conditions and malignant OC. In the diagnosis of early-stage OC, the area under the curve (AUC) for Citrulline was 0.847 (95 % Confidence Interval (CI): 0.719–0.974), compared to 0.770 (95 % CI: 0.596–0.944) for TTCA, and 0.754 for Methionine-Cysteine (95 % CI: 0.589–0.919). These metabolites demonstrate a superior diagnostic capability relative to CA125, which has an AUC of 0.689 (95 % CI: 0.448–0.931). Among these biomarkers, Citrulline stands out as the most promising. Additionally, in the diagnosis of benign conditions and malignant OC, using logistic regression to combine potential biomarkers with CA125 has an AUC of 0.987 (95 % CI: 0.9708–1) has been proven to be more effective than relying solely on the traditional biomarker CA125 with an AUC of 0.933 (95 % CI: 0.870–0.996). Furthermore, among all the differential metabolites, lipid metabolites dominate, significantly impacting glycerophospholipid metabolism pathway. The discovered serum metabolite biomarkers demonstrate excellent diagnostic performance for distinguishing between benign conditions and malignant OC and for early diagnosis of malignant OC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dingxy1009完成签到,获得积分10
1秒前
fengpu完成签到,获得积分10
3秒前
NexusExplorer应助果实采纳,获得10
3秒前
3秒前
清风慎独完成签到,获得积分10
3秒前
日暮炊烟完成签到 ,获得积分0
4秒前
小圆圈发布了新的文献求助10
5秒前
7秒前
俏皮易绿完成签到 ,获得积分10
9秒前
ang完成签到,获得积分10
10秒前
LCX完成签到,获得积分10
12秒前
大俊哥完成签到,获得积分10
12秒前
小赞发布了新的文献求助10
13秒前
14秒前
霸气的猎豹完成签到,获得积分10
14秒前
魏莱完成签到,获得积分10
16秒前
hihi完成签到,获得积分0
17秒前
marinemiao完成签到,获得积分10
19秒前
_Forelsket_关注了科研通微信公众号
21秒前
老西瓜完成签到,获得积分10
21秒前
22秒前
22秒前
奈何完成签到,获得积分10
24秒前
Abi完成签到,获得积分10
27秒前
wenwen完成签到,获得积分10
28秒前
28秒前
仁者无敌完成签到,获得积分10
31秒前
DONNYTIO完成签到,获得积分10
38秒前
冷傲菠萝完成签到 ,获得积分10
39秒前
忽忽完成签到,获得积分10
39秒前
40秒前
zhaolee完成签到 ,获得积分10
41秒前
43秒前
大模型应助科研通管家采纳,获得10
45秒前
Orange应助科研通管家采纳,获得10
45秒前
汉堡包应助科研通管家采纳,获得10
45秒前
45秒前
星辰大海应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139837
求助须知:如何正确求助?哪些是违规求助? 2790697
关于积分的说明 7796331
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185