Metabolomic biomarkers for benign conditions and malignant ovarian cancer: Advancing early diagnosis

代谢组学 卵巢癌 医学 癌症 肿瘤科 内科学 生物信息学 生物
作者
Wenjia Zhang,Zhizhen Lai,Xiaoyue Liang,Zhonghao Yuan,Yize Yuan,Zhigang Wang,Peng Peng,Liangyu Xia,Xiaolin Yang,Zhili Li
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:560: 119734-119734 被引量:3
标识
DOI:10.1016/j.cca.2024.119734
摘要

Ovarian cancer (OC) is a major global cause of death among gynecological cancers, with a high mortality rate. Early diagnosis, distinguishing between benign conditions and early malignant OC forms, is vital for successful treatment. This research investigates serum metabolites to find diagnostic biomarkers for early OC identification. Metabolomic profiles derived from the serum of 60 patients with benign conditions and 60 patients with malignant OC were examined using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Comparative analysis revealed differential metabolites linked to OC, aiding biomarker identification for early-diagnosis of OC via machine learning features. The predictive ability of these biomarkers was evaluated against the traditional biomarker, cancer antigen 125 (CA125). 84 differential metabolites were identified, including 2-Thiothiazolidine-4-carboxylic acid (TTCA), Methionyl-Cysteine, and Citrulline that could serve as potential biomarkers to identify benign conditions and malignant OC. In the diagnosis of early-stage OC, the area under the curve (AUC) for Citrulline was 0.847 (95 % Confidence Interval (CI): 0.719–0.974), compared to 0.770 (95 % CI: 0.596–0.944) for TTCA, and 0.754 for Methionine-Cysteine (95 % CI: 0.589–0.919). These metabolites demonstrate a superior diagnostic capability relative to CA125, which has an AUC of 0.689 (95 % CI: 0.448–0.931). Among these biomarkers, Citrulline stands out as the most promising. Additionally, in the diagnosis of benign conditions and malignant OC, using logistic regression to combine potential biomarkers with CA125 has an AUC of 0.987 (95 % CI: 0.9708–1) has been proven to be more effective than relying solely on the traditional biomarker CA125 with an AUC of 0.933 (95 % CI: 0.870–0.996). Furthermore, among all the differential metabolites, lipid metabolites dominate, significantly impacting glycerophospholipid metabolism pathway. The discovered serum metabolite biomarkers demonstrate excellent diagnostic performance for distinguishing between benign conditions and malignant OC and for early diagnosis of malignant OC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xmj完成签到,获得积分20
1秒前
橘子完成签到,获得积分10
1秒前
2秒前
1112完成签到,获得积分10
2秒前
2秒前
辞稚发布了新的文献求助10
2秒前
Lumosv完成签到,获得积分10
2秒前
bkagyin应助慈祥的惜霜采纳,获得10
4秒前
陶醉清完成签到,获得积分10
4秒前
Xenia完成签到,获得积分10
4秒前
5秒前
1112发布了新的文献求助10
6秒前
深情安青应助远方的大树采纳,获得10
6秒前
7秒前
咕噜发布了新的文献求助10
7秒前
8秒前
小马甲应助一块木头采纳,获得10
9秒前
小二郎应助白鸿瑞采纳,获得10
9秒前
LT关闭了LT文献求助
9秒前
屹舟完成签到 ,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
yiyi完成签到,获得积分10
10秒前
万能图书馆应助Linsey采纳,获得10
11秒前
义气的水蓝应助逆光采纳,获得50
11秒前
Butterfly完成签到,获得积分10
11秒前
11秒前
12秒前
倪好发布了新的文献求助10
13秒前
满意曼荷应助majf采纳,获得10
13秒前
14秒前
无极微光应助SICHEN采纳,获得20
15秒前
含糊的幻姬应助11采纳,获得10
15秒前
Akim应助好运6连采纳,获得10
15秒前
Hupoo完成签到,获得积分10
16秒前
16秒前
16秒前
清新的易真完成签到,获得积分10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490477
求助须知:如何正确求助?哪些是违规求助? 4589000
关于积分的说明 14422947
捐赠科研通 4521048
什么是DOI,文献DOI怎么找? 2477109
邀请新用户注册赠送积分活动 1462474
关于科研通互助平台的介绍 1435306