Metabolomic biomarkers for benign conditions and malignant ovarian cancer: Advancing early diagnosis

代谢组学 卵巢癌 医学 癌症 肿瘤科 内科学 生物信息学 生物
作者
Wenjia Zhang,Zhizhen Lai,Xiaoyue Liang,Zhonghao Yuan,Yize Yuan,Zhigang Wang,Peng Peng,Liangyu Xia,Xiaolin Yang,Zhili Li
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:560: 119734-119734 被引量:3
标识
DOI:10.1016/j.cca.2024.119734
摘要

Ovarian cancer (OC) is a major global cause of death among gynecological cancers, with a high mortality rate. Early diagnosis, distinguishing between benign conditions and early malignant OC forms, is vital for successful treatment. This research investigates serum metabolites to find diagnostic biomarkers for early OC identification. Metabolomic profiles derived from the serum of 60 patients with benign conditions and 60 patients with malignant OC were examined using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Comparative analysis revealed differential metabolites linked to OC, aiding biomarker identification for early-diagnosis of OC via machine learning features. The predictive ability of these biomarkers was evaluated against the traditional biomarker, cancer antigen 125 (CA125). 84 differential metabolites were identified, including 2-Thiothiazolidine-4-carboxylic acid (TTCA), Methionyl-Cysteine, and Citrulline that could serve as potential biomarkers to identify benign conditions and malignant OC. In the diagnosis of early-stage OC, the area under the curve (AUC) for Citrulline was 0.847 (95 % Confidence Interval (CI): 0.719–0.974), compared to 0.770 (95 % CI: 0.596–0.944) for TTCA, and 0.754 for Methionine-Cysteine (95 % CI: 0.589–0.919). These metabolites demonstrate a superior diagnostic capability relative to CA125, which has an AUC of 0.689 (95 % CI: 0.448–0.931). Among these biomarkers, Citrulline stands out as the most promising. Additionally, in the diagnosis of benign conditions and malignant OC, using logistic regression to combine potential biomarkers with CA125 has an AUC of 0.987 (95 % CI: 0.9708–1) has been proven to be more effective than relying solely on the traditional biomarker CA125 with an AUC of 0.933 (95 % CI: 0.870–0.996). Furthermore, among all the differential metabolites, lipid metabolites dominate, significantly impacting glycerophospholipid metabolism pathway. The discovered serum metabolite biomarkers demonstrate excellent diagnostic performance for distinguishing between benign conditions and malignant OC and for early diagnosis of malignant OC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ataybabdallah发布了新的文献求助30
1秒前
1秒前
难过笑寒发布了新的文献求助10
2秒前
整箱完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
聪慧的鹤轩完成签到,获得积分10
6秒前
Lucky完成签到,获得积分10
8秒前
8秒前
iiiid完成签到,获得积分10
8秒前
8秒前
鸽子发布了新的文献求助10
9秒前
无语的成仁完成签到,获得积分10
9秒前
10秒前
10秒前
小马发布了新的文献求助10
11秒前
小葱头发布了新的文献求助50
11秒前
JMD完成签到,获得积分20
13秒前
科研通AI2S应助left_right采纳,获得10
13秒前
星辰大海应助shinble采纳,获得30
13秒前
Owen应助迪迦奥特曼采纳,获得10
14秒前
所所应助prew采纳,获得10
15秒前
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
ccm应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
shhoing应助科研通管家采纳,获得10
15秒前
shhoing应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537074
求助须知:如何正确求助?哪些是违规求助? 4624638
关于积分的说明 14592736
捐赠科研通 4565155
什么是DOI,文献DOI怎么找? 2502201
邀请新用户注册赠送积分活动 1480908
关于科研通互助平台的介绍 1452098