Optimizing Transfection Efficiency in CAR-T Cell Manufacturing through Multiple Administrations of Lipid-Based Nanoparticles

转染 内化 细胞生物学 Jurkat细胞 细胞培养 细胞内 内体 细胞 化学 计算机科学 生物 T细胞 免疫学 生物化学 遗传学 免疫系统
作者
Francesca Giulimondi,Luca Digiacomo,Serena Renzi,Chiara Cassone,Andrea Pirrottina,Rosa Molfetta,Ilaria Elena Palamà,Gabriele Maiorano,Giuseppe Gigli,Heinz Amenitsch,Daniela Pozzi,Alessandra Zingoni,Giulio Caracciolo
出处
期刊:ACS applied bio materials [American Chemical Society]
卷期号:7 (6): 3746-3757 被引量:10
标识
DOI:10.1021/acsabm.4c00103
摘要

The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a significant duration. To address this gap, this study aims to formulate a transfection protocol utilizing multiple lipid-based nanoparticles (LNPs) administrations to enhance transfection efficiency (TE) to clinically relevant levels. By systematically fine-tuning and optimizing our transfection protocol through a series of iterative refinements, we have accomplished a remarkable one-order-of-magnitude augmentation in TE within the immortalized T-lymphocyte Jurkat cell line. This enhancement has been consistently observed over 2 weeks, and importantly, it has been achieved without any detrimental impact on cell viability. In the subsequent phase of our study, we aimed to optimize the gene delivery system by evaluating three lipid-based formulations tailored for DNA encapsulation using our refined protocol. These formulations encompassed two LNPs constructed from ionizable lipids and featuring systematic variations in lipid composition (iLNPs) and a cationic lipoplex (cLNP). Our findings showcased a notable standout among the three formulations, with cLNP emerging as a frontrunner for further refinement and integration into the production pipeline of CAR-T therapies. Consequently, cLNP was scrutinized for its potential to deliver CAR-encoding plasmid DNA to the HEK-293 cell line. Confocal microscopy experiments demonstrated its efficiency, revealing substantial internalization compared to iLNPs. By employing a recently developed confocal image analysis method, we substantiated that cellular entry of cLNP predominantly occurs through macropinocytosis. This mechanism leads to heightened intracellular endosomal escape and mitigates lysosomal accumulation. The successful expression of anti-CD19-CD28-CD3z, a CAR engineered to target CD19, a protein often expressed on the surface of B cells, was confirmed using a fluorescence-based assay. Overall, our results indicated the effectiveness of cLNP in gene delivery and suggested the potential of multiple administration transfection as a practical approach for refining T-cell engineering protocols in CAR therapies. Future investigations may focus on refining outcomes by adjusting transfection parameters like nucleic acid concentration, lipid-to-DNA ratio, and incubation time to achieve improved TE and increased gene expression levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
含蓄绿兰发布了新的文献求助10
刚刚
刚刚
刚刚
充电宝应助流水采纳,获得30
1秒前
1秒前
平常盼易完成签到,获得积分20
1秒前
2秒前
2秒前
xxx11完成签到,获得积分10
2秒前
3秒前
我嘞个豆发布了新的文献求助10
3秒前
kyf1993发布了新的文献求助10
3秒前
木棉完成签到,获得积分10
4秒前
烽火残心发布了新的文献求助10
4秒前
shaw发布了新的文献求助10
4秒前
粗犷的雨梅关注了科研通微信公众号
4秒前
良辰发布了新的文献求助10
4秒前
小西发布了新的文献求助10
5秒前
领导范儿应助7777采纳,获得10
5秒前
学学学天天学完成签到,获得积分10
6秒前
ltc发布了新的文献求助10
6秒前
yaoyao发布了新的文献求助10
6秒前
Mia发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
顾矜应助颀一一采纳,获得10
7秒前
廿伊发布了新的文献求助10
8秒前
慕青应助阳光青旋采纳,获得30
8秒前
Hello应助佳期采纳,获得10
8秒前
木沐发布了新的文献求助10
8秒前
9秒前
眉间雪完成签到,获得积分10
9秒前
小蘑菇应助Pk采纳,获得10
9秒前
10秒前
万能图书馆应助手术刀采纳,获得10
10秒前
NNi关闭了NNi文献求助
10秒前
jeff完成签到,获得积分10
10秒前
Legend发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758956
求助须知:如何正确求助?哪些是违规求助? 5518438
关于积分的说明 15392719
捐赠科研通 4896143
什么是DOI,文献DOI怎么找? 2633584
邀请新用户注册赠送积分活动 1581565
关于科研通互助平台的介绍 1537189