清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

LGHAP v2: a global gap-free aerosol optical depth and PM2.5 concentration dataset since 2000 derived via big Earth data analytics

气溶胶 大数据 环境科学 分析 数据分析 土(古典元素) 大气科学 计算机科学 地质学 气象学 数据科学 物理 数据挖掘 数学物理
作者
Kaixu Bai,Ke Li,Liuqing Shao,Xinran Li,Chaoshun Liu,Zhengqiang Li,Mingliang Ma,Di Han,Yibing Sun,Zhe Zheng,Ruijie Li,Ni‐Bin Chang,Jianping Guo
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:16 (5): 2425-2448
标识
DOI:10.5194/essd-16-2425-2024
摘要

Abstract. The Long-term Gap-free High-resolution Air Pollutants (LGHAP) concentration dataset generated in our previous study has provided spatially contiguous daily aerosol optical depth (AOD) and fine particulate matter (PM2.5) concentrations at a 1 km grid resolution in China since 2000. This advancement empowered unprecedented assessments of regional aerosol variations and their influence on the environment, health, and climate over the past 20 years. However, there is a need to enhance such a high-quality AOD and PM2.5 concentration dataset with new robust features and extended spatial coverage. In this study, we present version 2 of a global-scale LGHAP dataset (LGHAP v2), which was generated using improved big Earth data analytics via a seamless integration of versatile data science, pattern recognition, and machine learning methods. Specifically, multimodal AODs and air quality measurements acquired from relevant satellites, ground monitoring stations, and numerical models were harmonized by harnessing the capability of random-forest-based data-driven models. Subsequently, an improved tensor-flow-based AOD reconstruction algorithm was developed to weave the harmonized multisource AOD products together for filling data gaps in Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD retrievals from Terra. The results of the ablation experiments demonstrated better performance of the improved tensor-flow-based gap-filling method in terms of both convergence speed and data accuracy. Ground-based validation results indicated good data accuracy of this global gap-free AOD dataset, with a correlation coefficient (R) of 0.85 and a root mean square error (RMSE) of 0.14 compared to the worldwide AOD observations from the AErosol RObotic NETwork (AERONET), outperforming the purely reconstructed AODs (R = 0.83, RMSE = 0.15), but they were slightly worse than raw MAIAC AOD retrievals (R = 0.88, RMSE = 0.11). For PM2.5 concentration mapping, a novel deep-learning approach, termed the SCene-Aware ensemble learning Graph ATtention network (SCAGAT), was hereby applied. While accounting for the scene representativeness of data-driven models across regions, the SCAGAT algorithm performed better during spatial extrapolation, largely reducing modeling biases over regions with limited and/or even absent in situ PM2.5 concentration measurements. The validation results indicated that the gap-free PM2.5 concentration estimates exhibit higher prediction accuracies, with an R of 0.95 and an RMSE of 5.7 µg m−3, compared to PM2.5 concentration measurements obtained from former holdout sites worldwide. Overall, while leveraging state-of-the-art methods in data science and artificial intelligence, a quality-enhanced LGHAP v2 dataset was generated through big Earth data analytics by cohesively weaving together multimodal AODs and air quality measurements from diverse sources. The gap-free, high-resolution, and global coverage merits render the LGHAP v2 dataset an invaluable database for advancing aerosol- and haze-related studies as well as triggering multidisciplinary applications for environmental management, health-risk assessment, and climate change attribution. All gap-free AOD and PM2.5 concentration grids in the LGHAP v2 dataset, as well as the data user guide and relevant visualization codes, are publicly accessible at https://zenodo.org/communities/ecnu_lghap (last access: 3 April 2024, Bai and Li, 2023a).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
12秒前
陈鹿华完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
29秒前
allrubbish完成签到,获得积分10
30秒前
zyh完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
50秒前
天天快乐应助平常易烟采纳,获得10
59秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
平常易烟发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
龙猫爱看书完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
大雪封山完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
能干的语芙完成签到 ,获得积分10
3分钟前
juan完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
sue发布了新的文献求助20
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661074
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744064
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734518