亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HyGloadAttack: Hard-label black-box textual adversarial attacks via hybrid optimization

对抗制 计算机科学 初始化 推论 人工智能 嵌入 黑匣子 可微函数 机器学习 理论计算机科学 数学 数学分析 程序设计语言
作者
Zhaorong Liu,Xi Xiong,Yuanyuan Li,Yan Yu,J.-H Lu,Shuai Zhang,Fei Xiong
出处
期刊:Neural Networks [Elsevier]
卷期号:178: 106461-106461 被引量:28
标识
DOI:10.1016/j.neunet.2024.106461
摘要

Hard-label black-box textual adversarial attacks present a highly challenging task due to the discrete and non-differentiable nature of text data and the lack of direct access to the model's predictions. Research in this issue is still in its early stages, and the performance and efficiency of existing methods has potential for improvement. For instance, exchange-based and gradient-based attacks may become trapped in local optima and require excessive queries, hindering the generation of adversarial examples with high semantic similarity and low perturbation under limited query conditions. To address these issues, we propose a novel framework called HyGloadAttack (adversarial Attacks via Hybrid optimization and Global random initialization) for crafting high-quality adversarial examples. HyGloadAttack utilizes a perturbation matrix in the word embedding space to find nearby adversarial examples after global initialization and selects synonyms that maximize similarity while maintaining adversarial properties. Furthermore, we introduce a gradient-based quick search method to accelerate the search process of optimization. Extensive experiments on five datasets of text classification and natural language inference, as well as two real APIs, demonstrate the significant superiority of our proposed HyGloadAttack method over state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
8秒前
压缩完成签到 ,获得积分10
9秒前
11秒前
11秒前
13秒前
酷波er应助WOC采纳,获得10
17秒前
lsl完成签到 ,获得积分10
22秒前
30秒前
朱明完成签到 ,获得积分10
34秒前
36秒前
41秒前
oooo1030完成签到,获得积分10
43秒前
顾矜应助满锅采纳,获得10
44秒前
脑洞疼应助李亚彤采纳,获得10
44秒前
WOC发布了新的文献求助10
46秒前
46秒前
51秒前
靠近一点点关注了科研通微信公众号
52秒前
科目三应助清风朗月采纳,获得10
53秒前
57秒前
59秒前
满锅发布了新的文献求助10
1分钟前
1分钟前
1分钟前
满锅完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助祁曼岚采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
momo123发布了新的文献求助10
1分钟前
重要过客完成签到 ,获得积分10
1分钟前
1分钟前
oooo1030发布了新的文献求助10
1分钟前
1分钟前
清风朗月发布了新的文献求助10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470027
求助须知:如何正确求助?哪些是违规求助? 4572974
关于积分的说明 14337895
捐赠科研通 4499883
什么是DOI,文献DOI怎么找? 2465445
邀请新用户注册赠送积分活动 1453805
关于科研通互助平台的介绍 1428359