The Effect of Dispersion on the Informativeness of Consensus Analyst Target Prices

色散(光学) 库存(枪支) 职位(财务) 价格分散 金融经济学 激励 经济 计量经济学 货币经济学 树篱 交易策略 业务 财务 微观经济学 物理 光学 机械工程 生态学 生物 工程类
作者
Asa Palley,Thomas D. Steffen,Frank Zhang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2021.03549
摘要

Consensus analyst target prices are widely available online at no cost to investors. In this paper, we examine how the amount of dispersion in the individual target prices comprising the consensus affects the predictive association between the consensus target price and future returns. We find that returns implied by consensus target prices and realized future returns are positively correlated when dispersion is low, but they become highly negatively correlated when dispersion is high. Further analyses suggest that the differing effect of dispersion stems from incentive-driven staleness in price targets by some analysts after bad news. As a stock performs poorly and some analysts are slow to update their target prices, dispersion increases, and the consensus target price becomes too high. This has important implications for how consensus analyst target prices should inform investment decisions. We show that a hedge strategy taking a long (short) position in stocks with the highest predicted returns among stocks with the lowest (highest) dispersion earns more than 11% annually. Finally, we show that the negative correlation between consensus-based predicted returns and future realized returns for high-dispersion stocks exists mainly for stocks with high retail interest, suggesting that unsophisticated investors are misled by inflated target prices that are available freely online. This paper was accepted by Suraj Srinivasan, accounting. Funding: The authors acknowledge financial support from Indiana University and Yale University. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2021.03549 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qiqi完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
喻辰星发布了新的文献求助10
2秒前
jasmine970000完成签到,获得积分10
2秒前
神勇的雅香应助zhanzhanzhan采纳,获得10
3秒前
研友_8yPrqZ完成签到,获得积分10
3秒前
自信的伊完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
爆米花应助9℃采纳,获得10
5秒前
Raymond完成签到,获得积分0
6秒前
鱼雷发布了新的文献求助10
6秒前
甜蜜秋蝶发布了新的文献求助10
6秒前
ysl发布了新的文献求助30
6秒前
yyy完成签到,获得积分10
6秒前
6秒前
自信的伊发布了新的文献求助10
7秒前
Stanley发布了新的文献求助10
7秒前
wang发布了新的文献求助10
7秒前
7秒前
大鹏发布了新的文献求助50
7秒前
丘比特应助艺玲采纳,获得10
7秒前
hobowei发布了新的文献求助10
8秒前
梦里见陈情完成签到,获得积分10
8秒前
JJJ应助szh123采纳,获得10
8秒前
FFFFFFF应助细腻沅采纳,获得10
8秒前
ym发布了新的文献求助10
8秒前
Yn完成签到 ,获得积分10
9秒前
9秒前
秋季完成签到,获得积分10
10秒前
wwb完成签到,获得积分10
10秒前
张自信完成签到,获得积分10
11秒前
华仔应助VDC采纳,获得10
11秒前
嘟嘟完成签到,获得积分10
12秒前
卡卡完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762