亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Uncertainty-aware Contrastive Learning for Semi-supervised Classification of Multimodal Remote Sensing Images

计算机科学 人工智能 遥感 上下文图像分类 模式识别(心理学) 机器学习 计算机视觉 图像(数学) 地质学
作者
Kexin Ding,Ting Lu,Shutao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:1
标识
DOI:10.1109/tgrs.2024.3406690
摘要

Recently, deep learning presents a promising performance in the joint classification of multimodal remote sensing (RS) data. However, most of the approaches adopt a supervised learning manner, where the discrimination capability is limited by the paucity of labeled samples. Though some attempts have been made to develop semi-supervised methods, they prefer to select the highly confident predictions as pseudo ground truth and discard those unreliable ones. Actually, unreliable samples can also provide useful information, e.g., indicating the categories to which samples may belong and definitely not belong. Focused on this, a novel uncertainty-aware contrastive learning (UACL) method is proposed. Here, label uncertainty analysis based on multi-level probability estimation is first conducted to separate reliable and unreliable samples, which are then processed with a designed hybrid ("hard" or "soft") contrastive learning (CL) strategy. For reliable samples, the "hard" CL pushes the network to learn features that will minimize the intra-class distance while maximizing the inter-class distance, according to the pseudo-labels. For unreliable samples, the "soft" CL aims to learn the similarity and difference among samples, where the predicted class probabilities are queried to estimate a soft mask for an adaptive feature similarity measurement. Moreover, a multimodal spectral-spatial joint feature representation pipeline of triple branches, i.e., one spectral branch for hyperspectral images (HSIs) and two spatial branches for multimodal data, is also introduced. By jointly learning from both labeled and unlabeled samples, more discriminative spectral-spatial feature representation will lead to a further boost in classification performance. Extensive experiments on four well-known multimodal datasets prove the effectiveness of the proposed semi-supervised classification method. Codes are available at https://github.com/Ding-Kexin/UACL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫鲂发布了新的文献求助10
1秒前
4秒前
ZXX发布了新的文献求助10
8秒前
David完成签到 ,获得积分10
25秒前
30秒前
32秒前
tlx发布了新的文献求助10
33秒前
李知恩完成签到 ,获得积分10
35秒前
高歌猛进完成签到,获得积分10
40秒前
月璃完成签到 ,获得积分10
42秒前
45秒前
47秒前
Otter完成签到,获得积分10
47秒前
tlx完成签到,获得积分10
52秒前
积极的千易完成签到,获得积分10
52秒前
TRz发布了新的文献求助10
53秒前
吾日三省吾身完成签到 ,获得积分10
59秒前
TRz完成签到,获得积分10
1分钟前
LEH完成签到,获得积分10
1分钟前
辣椒完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
LEH发布了新的文献求助10
1分钟前
1分钟前
李昊搏发布了新的文献求助10
1分钟前
oscar完成签到,获得积分10
1分钟前
cheesy发布了新的文献求助10
1分钟前
cheesy完成签到,获得积分10
1分钟前
1分钟前
龙腾岁月完成签到 ,获得积分10
1分钟前
zotero完成签到,获得积分10
1分钟前
zotero发布了新的文献求助10
1分钟前
依然灬聆听完成签到,获得积分10
1分钟前
shentaii完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
IfItheonlyone完成签到 ,获得积分10
1分钟前
Alan弟弟发布了新的文献求助10
1分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460014
求助须知:如何正确求助?哪些是违规求助? 3054358
关于积分的说明 9041817
捐赠科研通 2743680
什么是DOI,文献DOI怎么找? 1505106
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694860