Discriminative feature analysis of dairy products based on machine learning algorithms and Raman spectroscopy

人工智能 特征(语言学) 判别式 极限学习机 模式识别(心理学) 支持向量机 计算机科学 算法 线性判别分析 卷积神经网络 机器学习 人工神经网络 语言学 哲学
作者
Jia-Xin Li,Chun-Chun Qing,Xiu-Qian Wang,Meijia Zhu,Boya Zhang,Zhengyong Zhang
出处
期刊:Current research in food science [Elsevier BV]
卷期号:8: 100782-100782 被引量:3
标识
DOI:10.1016/j.crfs.2024.100782
摘要

Discriminant analysis of similar food samples is an important aspect of achieving food quality control. The effective combination of Raman spectroscopy and machine learning algorithms has become an extremely attractive approach to develop intelligent discrimination techniques. Feature spectral analysis can help researchers gain a deeper understanding of the data patterns in food quality discrimination. Herein, this work takes the discrimination of three brands of dairy products as an example to investigate the Raman spectral feature based on the support vector machines (SVM), extreme learning machines (ELM) and convolutional neural network (CNN) algorithms. The results show that there are certain differences in the optimal spectral feature interval corresponding to different machine learning algorithms. Selecting the appropriate spectral feature interval can maintain high recognition accuracy and improve the computational efficiency of the algorithm. For example, the SVM algorithm has a recognition accuracy of 100% in the 890-980 cm−1, 1410-1500 cm−1 fusion spectral range, which takes about 200 s. The ELM algorithm also has a recognition accuracy of 100% in the 890-980 cm−1, 1410-1500 cm−1 fusion spectral range, which takes less than 0.3 s. The CNN algorithm has a recognition accuracy of 100% in the 890-980 cm−1, 1050-1180 cm−1, 1410-1500 cm−1 fusion spectral range, which takes about 80 s. In addition, by analyzing the distribution of spectral feature intervals based on Euclidean distance, the distribution of experimental samples based on feature spectra is visually displayed. Through the spectral feature analysis process of similar samples, a set of analysis strategies is provided to deeply reveal the data foundation of classification algorithms, which can provide reference for the analysis of relevant discriminative research patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
learnerZ_2023完成签到,获得积分10
刚刚
刚刚
卡沙巴完成签到,获得积分10
刚刚
追寻迎蓉完成签到 ,获得积分10
1秒前
CodeCraft应助024680采纳,获得10
1秒前
南宫士晋完成签到 ,获得积分10
2秒前
2秒前
爱听歌的大地完成签到 ,获得积分10
2秒前
3秒前
4秒前
JackWang618完成签到,获得积分10
4秒前
南卡完成签到,获得积分10
5秒前
5秒前
寒子川完成签到,获得积分20
5秒前
细心的小懒虫完成签到,获得积分10
5秒前
薛之谦完成签到,获得积分10
6秒前
蝉鸣发布了新的文献求助10
6秒前
淇怪完成签到 ,获得积分10
7秒前
7秒前
玻尿酸发布了新的文献求助10
7秒前
戴维少尉完成签到,获得积分10
7秒前
爱学习完成签到,获得积分10
8秒前
123444完成签到,获得积分10
8秒前
8秒前
BFUstbc发布了新的文献求助10
9秒前
天意完成签到,获得积分10
9秒前
dagongren完成签到,获得积分10
9秒前
liyu完成签到,获得积分20
10秒前
123444发布了新的文献求助10
10秒前
zero完成签到,获得积分10
11秒前
11秒前
11秒前
JACK完成签到,获得积分10
12秒前
阿曾完成签到,获得积分10
12秒前
王木木完成签到,获得积分10
12秒前
zhongbo完成签到,获得积分10
12秒前
liyu发布了新的文献求助10
13秒前
lsh完成签到,获得积分10
13秒前
hj完成签到,获得积分10
14秒前
nan完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
Andrew Duncan Senior: Physician of the Enlightenment 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3687085
求助须知:如何正确求助?哪些是违规求助? 3237330
关于积分的说明 9830343
捐赠科研通 2949260
什么是DOI,文献DOI怎么找? 1617266
邀请新用户注册赠送积分活动 764221
科研通“疑难数据库(出版商)”最低求助积分说明 738360