Combining time dependency and behavioral game: A Deep Markov Cognitive Hierarchy Model for human-like discretionary lane changing modeling

依赖关系(UML) 等级制度 马尔可夫链 计算机科学 马尔可夫模型 认知 人工智能 认知心理学 心理学 机器学习 经济 神经科学 市场经济
作者
Kehua Chen,Meixin Zhu,Lijun Sun,Hai Yang
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:189: 102980-102980
标识
DOI:10.1016/j.trb.2024.102980
摘要

Human drivers take discretionary lane changes when the target lane is perceived to offer better traffic conditions. Improper discretionary lane changes, however, lead to traffic congestion or even crashes. Considering its significant impact on traffic flow efficiency and safety, accurate modeling and prediction of discretionary lane-changing (LC) behavior is an important component in microscopic traffic analysis. Due to the interaction process and driver behavior stochasticity, modeling discretionary lane-changing behavior is a non-trivial task. Existing approaches include rule-based, utility-based, game-based, and data-driven ones, but they fail to balance the trade-off between modeling accuracy and interpretability. To address this gap, we propose a novel model, called Deep Markov Cognitive Hierarchy Model (DMCHM) which combines time dependency and behavioral game interaction for discretionary lane-changing modeling. Specifically, the lane-changing interaction process between the subject vehicle and the following vehicle in the target lane is modeled as a two-player game. We then introduce three dynamic latent variables for interaction aggressiveness, cognitive level, and payoffs based on the Hidden Markov Model. The proposed DMCHM combines time dependency together with cognitive hierarchy behavioral games while preserving model interpretability. Extensive experiments on three real-world driving datasets demonstrate that DMCHM outperforms other game-theoretic baselines and has comparable performance with state-of-the-art deep learning methods in time and location errors. Besides, we employ SHAP values to present the model interpretability. The analysis reveals that the proposed model has good performance in discretionary LC prediction with high interpretability. Finally, we conduct an agent-based simulation to investigate the impact of various driving styles on macroscopic traffic flows. The simulation shows that the existence of massive aggressive drivers can increase traffic capacity because of small gaps during car-following, but inversely decrease discretionary LC rates. A balanced mixing of conservative and aggressive driving styles promotes discretionary LC frequencies since conservative car-following behaviors provide more spaces for LC. The codes can be found at https://github.com/zeonchen/DMCHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lai完成签到,获得积分10
1秒前
2秒前
123完成签到,获得积分10
2秒前
Ava应助ll采纳,获得10
2秒前
billie完成签到,获得积分10
3秒前
FY完成签到 ,获得积分10
3秒前
靓丽代柔发布了新的文献求助10
3秒前
4秒前
4秒前
JamesPei应助hbq采纳,获得10
5秒前
共享精神应助熊儒恒采纳,获得10
5秒前
鸡冠要掉了完成签到,获得积分10
5秒前
6秒前
Ezio_sunhao发布了新的文献求助10
6秒前
Charley发布了新的文献求助10
6秒前
i7发布了新的文献求助10
6秒前
CodeCraft应助杜梦婷采纳,获得10
7秒前
7秒前
开心的凝云完成签到 ,获得积分10
7秒前
7秒前
7秒前
CC完成签到 ,获得积分10
7秒前
Orange应助靓丽代柔采纳,获得10
7秒前
8秒前
结实乐曲完成签到,获得积分10
8秒前
歪比八卜发布了新的文献求助10
9秒前
9秒前
跳跳糖发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
LYJ完成签到,获得积分10
10秒前
10秒前
nini发布了新的文献求助10
11秒前
呆呆发布了新的文献求助10
11秒前
11秒前
大神装发布了新的文献求助10
11秒前
浮游应助於傲松采纳,获得10
11秒前
12秒前
搞笑煎蛋完成签到 ,获得积分10
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131542
求助须知:如何正确求助?哪些是违规求助? 4333356
关于积分的说明 13500257
捐赠科研通 4170243
什么是DOI,文献DOI怎么找? 2286163
邀请新用户注册赠送积分活动 1287120
关于科研通互助平台的介绍 1228095