Combining time dependency and behavioral game: A Deep Markov Cognitive Hierarchy Model for human-like discretionary lane changing modeling

依赖关系(UML) 等级制度 马尔可夫链 计算机科学 马尔可夫模型 认知 人工智能 认知心理学 心理学 机器学习 经济 神经科学 市场经济
作者
Kehua Chen,Meixin Zhu,Lijun Sun,Hai Yang
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:189: 102980-102980
标识
DOI:10.1016/j.trb.2024.102980
摘要

Human drivers take discretionary lane changes when the target lane is perceived to offer better traffic conditions. Improper discretionary lane changes, however, lead to traffic congestion or even crashes. Considering its significant impact on traffic flow efficiency and safety, accurate modeling and prediction of discretionary lane-changing (LC) behavior is an important component in microscopic traffic analysis. Due to the interaction process and driver behavior stochasticity, modeling discretionary lane-changing behavior is a non-trivial task. Existing approaches include rule-based, utility-based, game-based, and data-driven ones, but they fail to balance the trade-off between modeling accuracy and interpretability. To address this gap, we propose a novel model, called Deep Markov Cognitive Hierarchy Model (DMCHM) which combines time dependency and behavioral game interaction for discretionary lane-changing modeling. Specifically, the lane-changing interaction process between the subject vehicle and the following vehicle in the target lane is modeled as a two-player game. We then introduce three dynamic latent variables for interaction aggressiveness, cognitive level, and payoffs based on the Hidden Markov Model. The proposed DMCHM combines time dependency together with cognitive hierarchy behavioral games while preserving model interpretability. Extensive experiments on three real-world driving datasets demonstrate that DMCHM outperforms other game-theoretic baselines and has comparable performance with state-of-the-art deep learning methods in time and location errors. Besides, we employ SHAP values to present the model interpretability. The analysis reveals that the proposed model has good performance in discretionary LC prediction with high interpretability. Finally, we conduct an agent-based simulation to investigate the impact of various driving styles on macroscopic traffic flows. The simulation shows that the existence of massive aggressive drivers can increase traffic capacity because of small gaps during car-following, but inversely decrease discretionary LC rates. A balanced mixing of conservative and aggressive driving styles promotes discretionary LC frequencies since conservative car-following behaviors provide more spaces for LC. The codes can be found at https://github.com/zeonchen/DMCHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
1秒前
1秒前
打打应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得200
1秒前
Maxmium发布了新的文献求助10
1秒前
1秒前
1秒前
慕青应助生椰拿铁采纳,获得10
1秒前
2秒前
fev123完成签到,获得积分10
3秒前
陈伟杰发布了新的文献求助10
3秒前
3秒前
纯真电源发布了新的文献求助10
3秒前
3秒前
4秒前
FashionBoy应助lalal采纳,获得10
4秒前
111完成签到,获得积分10
4秒前
xxd发布了新的文献求助30
5秒前
xiaofei666举报IZhuangXH求助涉嫌违规
5秒前
9秒前
9秒前
shirleyxzz发布了新的文献求助10
9秒前
马天垚发布了新的文献求助10
9秒前
10秒前
认真科研发布了新的文献求助10
11秒前
12秒前
llee2005完成签到,获得积分10
12秒前
13秒前
落水无波完成签到,获得积分10
13秒前
小蘑菇应助纯真电源采纳,获得10
13秒前
乐乐应助飘逸凝丝采纳,获得10
14秒前
14秒前
手心宇宙发布了新的文献求助10
14秒前
14秒前
jjyna发布了新的文献求助10
16秒前
lalal完成签到,获得积分10
17秒前
wsh发布了新的文献求助10
18秒前
谨慎不二发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153496
求助须知:如何正确求助?哪些是违规求助? 2804706
关于积分的说明 7861097
捐赠科研通 2462651
什么是DOI,文献DOI怎么找? 1310893
科研通“疑难数据库(出版商)”最低求助积分说明 629416
版权声明 601809