Combining time dependency and behavioral game: A Deep Markov Cognitive Hierarchy Model for human-like discretionary lane changing modeling

依赖关系(UML) 等级制度 马尔可夫链 计算机科学 马尔可夫模型 认知 人工智能 认知心理学 心理学 机器学习 经济 神经科学 市场经济
作者
Kehua Chen,Meixin Zhu,Lijun Sun,Hai Yang
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:189: 102980-102980
标识
DOI:10.1016/j.trb.2024.102980
摘要

Human drivers take discretionary lane changes when the target lane is perceived to offer better traffic conditions. Improper discretionary lane changes, however, lead to traffic congestion or even crashes. Considering its significant impact on traffic flow efficiency and safety, accurate modeling and prediction of discretionary lane-changing (LC) behavior is an important component in microscopic traffic analysis. Due to the interaction process and driver behavior stochasticity, modeling discretionary lane-changing behavior is a non-trivial task. Existing approaches include rule-based, utility-based, game-based, and data-driven ones, but they fail to balance the trade-off between modeling accuracy and interpretability. To address this gap, we propose a novel model, called Deep Markov Cognitive Hierarchy Model (DMCHM) which combines time dependency and behavioral game interaction for discretionary lane-changing modeling. Specifically, the lane-changing interaction process between the subject vehicle and the following vehicle in the target lane is modeled as a two-player game. We then introduce three dynamic latent variables for interaction aggressiveness, cognitive level, and payoffs based on the Hidden Markov Model. The proposed DMCHM combines time dependency together with cognitive hierarchy behavioral games while preserving model interpretability. Extensive experiments on three real-world driving datasets demonstrate that DMCHM outperforms other game-theoretic baselines and has comparable performance with state-of-the-art deep learning methods in time and location errors. Besides, we employ SHAP values to present the model interpretability. The analysis reveals that the proposed model has good performance in discretionary LC prediction with high interpretability. Finally, we conduct an agent-based simulation to investigate the impact of various driving styles on macroscopic traffic flows. The simulation shows that the existence of massive aggressive drivers can increase traffic capacity because of small gaps during car-following, but inversely decrease discretionary LC rates. A balanced mixing of conservative and aggressive driving styles promotes discretionary LC frequencies since conservative car-following behaviors provide more spaces for LC. The codes can be found at https://github.com/zeonchen/DMCHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助TT采纳,获得10
2秒前
3秒前
3秒前
英姑应助荒野星辰采纳,获得10
5秒前
5秒前
YHY完成签到,获得积分10
7秒前
科研通AI5应助魏伯安采纳,获得10
7秒前
caoyy发布了新的文献求助10
7秒前
8秒前
9秒前
张喻235532完成签到,获得积分10
10秒前
失眠虔纹发布了新的文献求助10
11秒前
香蕉觅云应助糊涂的小伙采纳,获得10
11秒前
11秒前
sutharsons应助科研通管家采纳,获得200
13秒前
打打应助科研通管家采纳,获得10
13秒前
axin应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
13秒前
李健应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
14秒前
lu应助科研通管家采纳,获得10
14秒前
14秒前
华仔应助科研通管家采纳,获得10
14秒前
研友_MLJldZ发布了新的文献求助10
14秒前
wys完成签到 ,获得积分10
15秒前
16秒前
michaelvin完成签到,获得积分10
16秒前
学术大白完成签到 ,获得积分10
19秒前
19秒前
SYT完成签到,获得积分10
20秒前
21秒前
23秒前
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849