亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining time dependency and behavioral game: A Deep Markov Cognitive Hierarchy Model for human-like discretionary lane changing modeling

依赖关系(UML) 等级制度 马尔可夫链 计算机科学 马尔可夫模型 认知 人工智能 认知心理学 心理学 机器学习 经济 神经科学 市场经济
作者
Kehua Chen,Meixin Zhu,Lijun Sun,Hai Yang
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:189: 102980-102980
标识
DOI:10.1016/j.trb.2024.102980
摘要

Human drivers take discretionary lane changes when the target lane is perceived to offer better traffic conditions. Improper discretionary lane changes, however, lead to traffic congestion or even crashes. Considering its significant impact on traffic flow efficiency and safety, accurate modeling and prediction of discretionary lane-changing (LC) behavior is an important component in microscopic traffic analysis. Due to the interaction process and driver behavior stochasticity, modeling discretionary lane-changing behavior is a non-trivial task. Existing approaches include rule-based, utility-based, game-based, and data-driven ones, but they fail to balance the trade-off between modeling accuracy and interpretability. To address this gap, we propose a novel model, called Deep Markov Cognitive Hierarchy Model (DMCHM) which combines time dependency and behavioral game interaction for discretionary lane-changing modeling. Specifically, the lane-changing interaction process between the subject vehicle and the following vehicle in the target lane is modeled as a two-player game. We then introduce three dynamic latent variables for interaction aggressiveness, cognitive level, and payoffs based on the Hidden Markov Model. The proposed DMCHM combines time dependency together with cognitive hierarchy behavioral games while preserving model interpretability. Extensive experiments on three real-world driving datasets demonstrate that DMCHM outperforms other game-theoretic baselines and has comparable performance with state-of-the-art deep learning methods in time and location errors. Besides, we employ SHAP values to present the model interpretability. The analysis reveals that the proposed model has good performance in discretionary LC prediction with high interpretability. Finally, we conduct an agent-based simulation to investigate the impact of various driving styles on macroscopic traffic flows. The simulation shows that the existence of massive aggressive drivers can increase traffic capacity because of small gaps during car-following, but inversely decrease discretionary LC rates. A balanced mixing of conservative and aggressive driving styles promotes discretionary LC frequencies since conservative car-following behaviors provide more spaces for LC. The codes can be found at https://github.com/zeonchen/DMCHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CyrusSo524完成签到,获得积分10
9秒前
大模型应助随便采纳,获得10
11秒前
hyl-tcm完成签到 ,获得积分10
18秒前
XieQinxie完成签到,获得积分10
18秒前
天天好心覃完成签到 ,获得积分10
20秒前
21秒前
yuwen发布了新的文献求助10
25秒前
26秒前
27秒前
31秒前
yn发布了新的文献求助10
32秒前
深情安青应助包容楷瑞采纳,获得10
33秒前
34秒前
ding应助hehehe采纳,获得10
34秒前
www完成签到,获得积分20
34秒前
科研通AI2S应助Rin333采纳,获得10
38秒前
www发布了新的文献求助10
39秒前
Jasper应助重要的夏烟采纳,获得10
40秒前
41秒前
43秒前
大模型应助李孟德对面采纳,获得30
43秒前
44秒前
hehehe发布了新的文献求助10
49秒前
49秒前
52秒前
HQ发布了新的文献求助10
55秒前
X悦完成签到,获得积分20
56秒前
57秒前
hehehe完成签到,获得积分10
58秒前
丘比特应助feifei采纳,获得10
1分钟前
HQ完成签到,获得积分20
1分钟前
1分钟前
漂流的云朵完成签到,获得积分10
1分钟前
suxili完成签到 ,获得积分10
1分钟前
出保函费发布了新的文献求助10
1分钟前
李志全完成签到 ,获得积分10
1分钟前
Owen应助虞美人采纳,获得30
1分钟前
柯语雪完成签到 ,获得积分10
1分钟前
sunnn完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968325
求助须知:如何正确求助?哪些是违规求助? 3513238
关于积分的说明 11166853
捐赠科研通 3248498
什么是DOI,文献DOI怎么找? 1794268
邀请新用户注册赠送积分活动 874964
科研通“疑难数据库(出版商)”最低求助积分说明 804629