BuildMon: Building Extraction and Change Monitoring in Time Series Remote Sensing Images

计算机科学 遥感 萃取(化学) 系列(地层学) 时间序列 变更检测 计算机视觉 地质学 机器学习 古生物学 化学 色谱法
作者
Y Y Wang,Shuailin Chen,Ruixiang Zhang,Fang Xu,Shuo Liang,Yujing Wang,Wen Yang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2024.3404781
摘要

Building extraction and change monitoring in remote sensing (RS) imagery play pivotal roles in various applications, including urban planning, disaster management, and infrastructure monitoring. While significant progress has been made in single and bi-temporal RS images, effectively harnessing the rich temporal information of time series RS images remains a challenge. Time series RS images offer an extended temporal span for monitoring dynamic changes in building instances. However, they often exhibit noticeable appearance discrepancies and feature variations, presenting substantial obstacles to effective multi-temporal information aggregation. To address these challenges, we introduce a Building Extraction and Change Monitoring Network (abbreviated as BuildMon), which jointly explores the segmentation masks, location tracking, and construction status of building instances. Our approach incorporates a spatial-temporal transformer to model relationships between images at different time spans. The windowed attention module within it can capture spatial-temporal context for a larger scope of feature aggregation. For enhancing the performance on both tasks, we adopted ground truth masks and semantic change information together as supervisory signals for BuildMon. This is complemented by the specially designed change-guided loss function, which specifically highlights regions of change and assigns targeted weights to building areas within the imagery. To validate the effectiveness of our method, we conduct comprehensive experiments on the SpaceNet 7 dataset. The results showcase the state-of-the-art performance of our approach, achieving mIoU and SCOT metrics of 67.90 and 39.73, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗玉发布了新的文献求助10
2秒前
呜啦啦完成签到,获得积分20
2秒前
上官若男应助鲤鱼不二采纳,获得10
4秒前
1257应助fbpuf采纳,获得10
5秒前
Robin发布了新的文献求助10
5秒前
Cynthia42完成签到 ,获得积分10
7秒前
9秒前
susan完成签到 ,获得积分10
9秒前
11秒前
爱静静应助小刘爱实验采纳,获得10
13秒前
麦芒拾音柴完成签到,获得积分10
13秒前
在水一方应助青椒采纳,获得10
15秒前
YYYYYY完成签到,获得积分10
15秒前
Robin完成签到,获得积分20
15秒前
shou85完成签到,获得积分10
17秒前
阡陌完成签到,获得积分20
18秒前
Lucas应助颜颜采纳,获得10
18秒前
18秒前
hal完成签到,获得积分20
20秒前
李健的粉丝团团长应助man采纳,获得10
20秒前
花花发布了新的文献求助10
21秒前
22秒前
Josh完成签到 ,获得积分10
22秒前
小树完成签到,获得积分10
22秒前
OsHTAS发布了新的文献求助10
23秒前
俏皮的松鼠完成签到 ,获得积分10
23秒前
yefeng发布了新的文献求助10
23秒前
25秒前
25秒前
Ma发布了新的文献求助30
26秒前
ldzjiao完成签到 ,获得积分10
28秒前
28秒前
28秒前
青椒发布了新的文献求助10
29秒前
29秒前
优秀剑愁完成签到 ,获得积分10
30秒前
31秒前
OsHTAS完成签到,获得积分10
32秒前
小刘爱实验完成签到,获得积分10
33秒前
啦啦啦发布了新的文献求助30
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151736
求助须知:如何正确求助?哪些是违规求助? 2803153
关于积分的说明 7852024
捐赠科研通 2460525
什么是DOI,文献DOI怎么找? 1309844
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760