迭代学习控制
稳健性(进化)
控制理论(社会学)
计算机科学
自适应控制
弹道
控制器(灌溉)
趋同(经济学)
迭代法
鲁棒控制
非线性系统
理论(学习稳定性)
控制工程
控制系统
算法
控制(管理)
人工智能
工程类
机器学习
物理
天文
生物化学
化学
电气工程
量子力学
生物
农学
经济
基因
经济增长
作者
Shida Liu,Weichao Huang,Honghai Ji,Li Wang
标识
DOI:10.1177/00368504241249617
摘要
A robust model-free adaptive iterative learning control (R-MFAILC) algorithm is proposed in this work to address the issue of laterally controlling an autonomous bus. First, according to the periodic repetitive working characteristics of autonomous buses, a novel dynamic linearized method used in the iterative domain is utilized, and a time-varying data model with a pseudo gradient (PG) is given. Then, the R-MFAILC controller is designed with a proposed adaptive attenuation factor. The proposed algorithm's advantage lies in the R-MFAILC controller, which solely utilizes the input and output data of the regulated entity. Moreover, the R-MFAILC controller has strong robustness and can handle the nonlinear measurement disturbances of the system. In simulations based on the Truck-Sim simulation platform, the effectiveness of the proposed algorithm is verified. A rigorous mathematical analysis is employed to demonstrate the stability and convergence of the proposed algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI