FFA-GPT: an automated pipeline for fundus fluorescein angiography interpretation and question-answer

计算机科学 口译(哲学) 自然语言处理 人工智能 管道(软件) 卡帕 眼底(子宫) 短信 机器学习 医学 放射科 程序设计语言 万维网 语言学 哲学
作者
Xiaolan Chen,Weiyi Zhang,Pusheng Xu,Ziwei Zhao,Yingfeng Zheng,Danli Shi,Mingguang He
出处
期刊:npj digital medicine [Springer Nature]
卷期号:7 (1) 被引量:4
标识
DOI:10.1038/s41746-024-01101-z
摘要

Abstract Fundus fluorescein angiography (FFA) is a crucial diagnostic tool for chorioretinal diseases, but its interpretation requires significant expertise and time. Prior studies have used Artificial Intelligence (AI)-based systems to assist FFA interpretation, but these systems lack user interaction and comprehensive evaluation by ophthalmologists. Here, we used large language models (LLMs) to develop an automated interpretation pipeline for both report generation and medical question-answering (QA) for FFA images. The pipeline comprises two parts: an image-text alignment module (Bootstrapping Language-Image Pre-training) for report generation and an LLM (Llama 2) for interactive QA. The model was developed using 654,343 FFA images with 9392 reports. It was evaluated both automatically, using language-based and classification-based metrics, and manually by three experienced ophthalmologists. The automatic evaluation of the generated reports demonstrated that the system can generate coherent and comprehensible free-text reports, achieving a BERTScore of 0.70 and F1 scores ranging from 0.64 to 0.82 for detecting top-5 retinal conditions. The manual evaluation revealed acceptable accuracy (68.3%, Kappa 0.746) and completeness (62.3%, Kappa 0.739) of the generated reports. The generated free-form answers were evaluated manually, with the majority meeting the ophthalmologists’ criteria (error-free: 70.7%, complete: 84.0%, harmless: 93.7%, satisfied: 65.3%, Kappa: 0.762–0.834). This study introduces an innovative framework that combines multi-modal transformers and LLMs, enhancing ophthalmic image interpretation, and facilitating interactive communications during medical consultation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小鱼发布了新的文献求助10
1秒前
2秒前
单纯的小松鼠完成签到,获得积分10
2秒前
如意的子默完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助xiaohuang采纳,获得10
3秒前
Fancy发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
李爱国应助asd采纳,获得10
6秒前
Lr03完成签到,获得积分20
6秒前
传奇3应助破伤疯采纳,获得10
6秒前
英俊的馒头完成签到,获得积分10
6秒前
rainbow发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
云鲲发布了新的文献求助20
9秒前
打打应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
goodesBright应助科研通管家采纳,获得30
9秒前
xjcy应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
xjcy应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
joy001完成签到,获得积分20
10秒前
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
高分求助中
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3089386
求助须知:如何正确求助?哪些是违规求助? 2741586
关于积分的说明 7565941
捐赠科研通 2392093
什么是DOI,文献DOI怎么找? 1268497
科研通“疑难数据库(出版商)”最低求助积分说明 614069
版权声明 598692