Modelling Manoeuvrability in the Context of Ship Collision Analysis Using Non-Linear FEM

碰撞 背景(考古学) 有限元法 弹道 Fortran语言 解算器 子程序 计算机科学 海洋工程 工程类 结构工程 物理 地质学 古生物学 计算机安全 天文 程序设计语言 操作系统
作者
Šimun Sviličić,Smiljko Rudan
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:11 (3): 497-497 被引量:3
标识
DOI:10.3390/jmse11030497
摘要

Ship collisions are rare events that may have a significant impact on the safety of people, ships, and other marine structures, as well as on the environment. Because of this, they are extensively studied but events that just precede collision are often overlooked. To rationally assess collision risks and consequences, a ship’s trajectory, and consequently the velocity and collision angle, should be known. One way to achieve this is through accurate modelling of ship manoeuvrability in collision analysis using non-linear FEM (NFEM). The Abkowitz manoeuvring model is implemented in the LS-Dyna software code and is therefore coupled with FEM calculations. Hydrodynamic forces are calculated in each time step of the LS-Dyna calculation and added to the FE model continuously through calculation. The accuracy of the calculations depends on the choice of and values of hydrodynamic derivatives from the Abkowitz model. Abkowitz’s model derives hydrodynamic forces in the Taylor expansion series to provide hydrodynamic derivatives. The application of the procedure is sensitive on higher-order Taylor series members. This article reviews different sets of hydrodynamic derivatives available for the KVLCC2 ship. Each of them is incorporated into the LS-Dyna NFEM solver by a user-made Fortran subroutine, with standard Zigzag and turning manoeuvres simulated and results compared with the experimental tests. As a result, the optimal selection of hydrodynamic derivatives is determined, laying a foundation for assessing the risk of ship collision due to different ship manoeuvres prior to the collision itself.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定紫菱发布了新的文献求助10
刚刚
李繁蕊发布了新的文献求助10
2秒前
万能图书馆应助愉快寄真采纳,获得10
2秒前
Rrr发布了新的文献求助10
2秒前
3秒前
3秒前
高兴藏花发布了新的文献求助10
3秒前
4秒前
顾闭月发布了新的文献求助10
6秒前
励志小薛完成签到,获得积分20
7秒前
doudou完成签到,获得积分10
7秒前
8秒前
Ting完成签到,获得积分10
9秒前
高兴藏花完成签到 ,获得积分20
9秒前
健忘的沛蓝完成签到 ,获得积分10
9秒前
clear发布了新的文献求助10
10秒前
10秒前
感动傀斗完成签到,获得积分10
10秒前
眼睛大的小鸽子完成签到 ,获得积分10
10秒前
hu完成签到,获得积分10
10秒前
科研通AI5应助顺顺采纳,获得10
10秒前
思源应助shengChen采纳,获得10
11秒前
宁静致远发布了新的文献求助10
12秒前
zhenpeng8888完成签到 ,获得积分10
12秒前
霜序初四完成签到 ,获得积分10
12秒前
13秒前
爆米花应助青木蓝采纳,获得10
13秒前
顾矜应助frank采纳,获得10
14秒前
heavennew完成签到,获得积分10
14秒前
充电宝应助绘梨衣采纳,获得10
15秒前
华仔应助励志小薛采纳,获得10
15秒前
15秒前
15秒前
单薄新烟发布了新的文献求助10
16秒前
16秒前
桐桐应助小王采纳,获得10
16秒前
17秒前
17秒前
17秒前
楚岸发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794