自愈水凝胶
材料科学
肿胀 的
极限抗拉强度
离子键合
化学工程
复合材料
纳米技术
离子
高分子化学
化学
有机化学
工程类
作者
Yiwan Huang,Sanyu Qian,Ju Zhou,Wenjun Chen,Tao Liu,Sheng Yang,Shijun Long,Xuefeng Li
标识
DOI:10.1002/adfm.202213549
摘要
Abstract Many living tissues, such as muscle, become mechanically stronger with growth. Yet, synthetic hydrogels usually exhibit an opposite size‐mechanical property relation, that is, swelling‐weakening behavior. Herein, a series of swollen yet strengthened polyampholyte (PA) hydrogels are developed via a simple metal‐ion solution soaking strategy. In this strategy, a dynamic PA hydrogel (with ionic bonds) is dialyzed in ZrOCl 2 solutions (Step‐I) and deionized water (Step‐II) successively to obtain equilibrated hydrogels. Due to the specific Zr 4+ ions and PA network structure, Step‐I takes several months with sample size and mechanical performance increasing continuously, while Step‐II only needs several days. Through this strategy, the resultant hydrogel networks are reorganized and eventually constructed by ionic and metalligand bonds, enabling the swelling yet strengthening behavior. A systematic study confirms that dialysis time in Step‐I and corresponding ZrOCl 2 concentration can significantly affect the multiphase microstructures of the hydrogels, resulting in different mechanical enhancements. The optimized hydrogel possesses 39.2 MPa of Young's modulus and 3.7 MPa of tensile strength, which are 302 and 5.5 times these of the original PA gel, respectively. Despite distinct swelling, these hydrogels still mechanically surpass many existing high‐performance hydrogels. This study opens a novel pathway for fabricating swollen yet strengthened hydrogels.
科研通智能强力驱动
Strongly Powered by AbleSci AI