系外行星
天体生物学
宜居性
火星探测计划
火星探测
地球行星
计算机科学
太空探索
遥感
太阳系
外星生命
行星科学
行星
人工智能
环境科学
地质学
航空航天工程
星星
天文
工程类
生物
计算机视觉
物理
作者
Kimberley Warren‐Rhodes,Nathalie A. Cabrol,Michael Phillips,Cinthya Tebes-Cayo,Freddie Kalaitzis,Diego Ayma,Cecilia Demergasso,G. Chong‐Díaz,Kevin C. Lee,Nancy W. Hinman,Kevin L. Rhodes,Linda Ng Boyle,J. L. Bishop,Michaël Hofmann,Neil Hutchinson,Camila Javiera,J. E. Moersch,Claire A. Mondro,Nora Nofke,Vı́ctor Parro
出处
期刊:Nature Astronomy
[Nature Portfolio]
日期:2023-03-06
卷期号:7 (4): 406-422
被引量:12
标识
DOI:10.1038/s41550-022-01882-x
摘要
In the search for biosignatures on Mars, there is an abundance of data from orbiters and rovers to characterize global and regional habitability, but much less information is available at the scales and resolutions of microbial habitats and biosignatures. Understanding whether the distribution of terrestrial biosignatures is characterized by recognizable and predictable patterns could yield signposts to optimize search efforts for life on other terrestrial planets. We advance an adaptable framework that couples statistical ecology with deep learning to recognize and predict biosignature patterns at nested spatial scales in a polyextreme terrestrial environment. Drone flight imagery connected simulated HiRISE data to ground surveys, spectroscopy and biosignature mapping to reveal predictable distributions linked to environmental factors. Artificial intelligence–machine learning models successfully identified geologic features with high probabilities for containing biosignatures at spatial scales relevant to rover-based astrobiology exploration. Targeted approaches augmented by deep learning delivered 56.9–87.5% probabilities of biosignature detection versus <10% for random searches and reduced the physical search space by 85–97%. Libraries of biosignature distributions, detection probabilities, predictive models and search roadmaps for many terrestrial environments will standardize analogue science research, enabling agnostic comparisons at all scales. A nested orbit-to-ground approach for microbial landscape patterns at different scales, tested in the high Andes, provides a machine learning-based search tool for detecting biosignatures on terrestrial planets.
科研通智能强力驱动
Strongly Powered by AbleSci AI