营养物
微生物
微生物种群生物学
环境科学
生态学
干旱
环境化学
非生物成分
化学
生物
细菌
遗传学
作者
Xuyang Wang,Yuqiang Li,Lilong Wang,Yulong Duan,Bo Yao,Yun Chen,Wenjie Cao
标识
DOI:10.1016/j.scitotenv.2023.162504
摘要
Soil extracellular enzyme activity (EEA) stoichiometry reflects the dynamic balance between microorganism metabolic demands for resources and nutrient availability. However, variations in metabolic limitations and their driving factors in arid desert areas with oligotrophic environments remain poorly understood. In this study, we investigated sites in different desert types in western China and measured the activities of two C-acquiring enzymes (β-1,4-glucosidase and β-D-cellobiohydrolase), two N-acquiring enzymes (β-1,4-N-acetylglucosaminidase and L-leucine aminopeptidase), and one organic-P-acquiring enzyme (alkaline phosphatase) to quantify and compare the metabolic limitations of soil microorganisms based on their EEA stoichiometry. The ratios of log-transformed C-, N-, and P-acquiring enzyme activities for all deserts combined were 1:1.1:0.9, which is close to the hypothetical global mean EEA stoichiometry (1:1:1). We quantified the microbial nutrient limitation by means of vector analysis using the proportional EEAs, and found that microbial metabolism was co-limited by soil C and N. For different desert types, the microbial N limitation increased in the following order: gravel desert < sand desert < mud desert < salt desert. Overall, the study area's climate explained the largest proportion of the variation in the microbial limitation (17.9 %), followed by soil abiotic factors (6.6 %) and biological factors (5.1 %). Our results confirmed that the EEA stoichiometry method can be used in microbial resource ecology research in a range of desert types, and that the soil microorganisms maintained community-level nutrient element homeostasis by adjusting enzyme production to increase uptake of scarce nutrients even in extremely oligotrophic environments such as deserts.
科研通智能强力驱动
Strongly Powered by AbleSci AI