A multi-modal pre-training transformer for universal transfer learning in metal–organic frameworks

计算机科学 情态动词 化学空间 变压器 学习迁移 编码器 金属有机骨架 网格 深度学习 测距 人工智能 机器学习 材料科学 吸附 工程类 电气工程 电信 生物信息学 化学 几何学 数学 有机化学 电压 高分子化学 生物 药物发现 操作系统
作者
Yeonghun Kang,Hyunsoo Park,Berend Smit,Jihan Kim
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (3): 309-318 被引量:72
标识
DOI:10.1038/s42256-023-00628-2
摘要

Metal–organic frameworks (MOFs) are a class of crystalline porous materials that exhibit a vast chemical space owing to their tunable molecular building blocks with diverse topologies. An unlimited number of MOFs can, in principle, be synthesized. Machine learning approaches can help to explore this vast chemical space by identifying optimal candidates with desired properties from structure–property relationships. Here we introduce MOFTransformer, a multi-modal Transformer encoder pre-trained with 1 million hypothetical MOFs. This multi-modal model utilizes integrated atom-based graph and energy-grid embeddings to capture both local and global features of MOFs, respectively. By fine-tuning the pre-trained model with small datasets ranging from 5,000 to 20,000 MOFs, our model achieves state-of-the-art results for predicting across various properties including gas adsorption, diffusion, electronic properties, and even text-mined data. Beyond its universal transfer learning capabilities, MOFTransformer generates chemical insights by analyzing feature importance through attention scores within the self-attention layers. As such, this model can serve as a platform for other MOF researchers that seek to develop new machine learning models for their work. Metal–organic frameworks are of high interest for a range of energy and environmental applications due to their stable gas storage properties. A new machine learning approach based on a pre-trained multi-modal transformer can be fine-tuned with small datasets to predict structure-property relationships and design new metal-organic frameworks for a range of specific tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wmuer完成签到 ,获得积分10
1秒前
wangdong发布了新的文献求助10
1秒前
1秒前
StevenZhao完成签到,获得积分0
2秒前
2秒前
2秒前
3秒前
稳重向南发布了新的文献求助10
3秒前
欢呼的书南完成签到,获得积分10
5秒前
5秒前
5秒前
jijahui发布了新的文献求助10
6秒前
chali48发布了新的文献求助10
7秒前
7秒前
8秒前
PANYIAO发布了新的文献求助10
9秒前
李爱国应助renxiya采纳,获得10
10秒前
11秒前
11秒前
12秒前
Orange应助费老三采纳,获得10
12秒前
lkk完成签到,获得积分10
12秒前
小音发布了新的文献求助10
13秒前
槑槑完成签到,获得积分20
13秒前
fffzy完成签到,获得积分10
14秒前
14秒前
赘婿应助徐捷宁采纳,获得10
15秒前
曾经的冰淇淋完成签到,获得积分10
15秒前
小马甲应助了了采纳,获得10
17秒前
火星上雨珍完成签到,获得积分10
17秒前
苏卿应助朱荧荧采纳,获得10
17秒前
18秒前
18秒前
满意的惮完成签到 ,获得积分10
19秒前
junjun发布了新的文献求助10
19秒前
零零发布了新的文献求助20
20秒前
眭超阳完成签到 ,获得积分10
21秒前
冷艳的语薇完成签到,获得积分10
22秒前
23秒前
adazbd完成签到,获得积分20
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652078
求助须知:如何正确求助?哪些是违规求助? 3216204
关于积分的说明 9711328
捐赠科研通 2924061
什么是DOI,文献DOI怎么找? 1601491
邀请新用户注册赠送积分活动 754218
科研通“疑难数据库(出版商)”最低求助积分说明 732987