Emerging poly- and perfluoroalkyl substances in water and sediment from Qiantang River-Hangzhou Bay

海湾 沉积物 环境科学 海洋学 环境化学 地质学 化学 古生物学
作者
Haixiang Cheng,Hangbiao Jin,Bin Lü,Chenhan Lv,Yinghui Ji,Hui Zhang,Rui Fan,Nan Zhao
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:875: 162687-162687 被引量:23
标识
DOI:10.1016/j.scitotenv.2023.162687
摘要

Many emerging poly- and perfluoroalkyl substances (PFASs) are being used in China, due to the gradual phase out of legacy PFASs. Occurrence and environmental behaviors of emerging PFASs in Chinese fresh water environment are still not well known. In this study, 31 PFASs, including 14 emerging PFASs, were measured in 29 pairs of water and sediment samples from Qiantang River-Hangzhou Bay, an important drinking water resource for cities in Yangtze River basin. Perfluorooctanoate was consistently the predominant legacy PFAS in water (8.8-130 ng/L) and sediment (3.7-49 ng/g dw). Twelve emerging PFASs were detected in water, with the dominance of 6:2 chlorinated polyfluoroalkyl ether sulfonates (6:2 Cl-PFAES; mean 11 ng/L, 0.79-57 ng/L) and 6:2 fluorotelomer sulfonate (6:2 FTS; 5.6 ng/L, < LOD-29 ng/L). Eleven emerging PFASs were found in sediment, and were also dominated by 6:2 Cl-PFAES (mean 4.3 ng/g dw, 0.19-16 ng/g dw) and 6:2 FTS (2.6 ng/g dw, < LOD-9.4 ng/g dw). Spatially, sampling sites closed to the surrounding cities had comparatively higher water concentrations of PFASs. Among emerging PFASs, 8:2 Cl-PFAES (3.0 ± 0.34) had the highest mean field-based log-transformed organic‑carbon normalized sediment-water partition coefficient (log Koc), followed by 6:2 Cl-PFAES (2.9 ± 0.35) and hexafluoropropylene oxide trimer acid (2.8 ± 0.32). p-perfluorous nonenoxybenzene sulfonate (2.3 ± 0.60) and 6:2 FTS (1.9 ± 0.54) had relatively lower mean log Koc values. To our knowledge, this is the most comprehensive study investigating the occurrence and partitioning behaviors of emerging PFASs in Qiantang River.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuha完成签到,获得积分10
刚刚
刚刚
欢喜从霜完成签到,获得积分10
1秒前
Orange应助LiShin采纳,获得10
1秒前
1秒前
欣慰友梅完成签到,获得积分10
1秒前
2秒前
llllllll发布了新的文献求助10
2秒前
2秒前
2秒前
CC完成签到,获得积分10
2秒前
wwuu发布了新的文献求助10
3秒前
shenyanlei发布了新的文献求助10
3秒前
一汁蟹发布了新的文献求助20
4秒前
大个应助绿麦盲区采纳,获得10
4秒前
雨齐完成签到,获得积分10
4秒前
茶艺如何发布了新的文献求助10
4秒前
4秒前
kk完成签到,获得积分10
5秒前
5秒前
123发布了新的文献求助10
5秒前
yyyy完成签到,获得积分10
6秒前
好好学习天天向上完成签到,获得积分10
6秒前
欣慰友梅发布了新的文献求助10
6秒前
6秒前
7秒前
Akim应助易伊澤采纳,获得10
7秒前
格局太小完成签到,获得积分10
7秒前
7秒前
尔云完成签到,获得积分10
8秒前
传奇3应助GGZ采纳,获得10
8秒前
我瞎蒙发布了新的文献求助10
8秒前
llllllll完成签到,获得积分10
9秒前
香蕉觅云应助shenyanlei采纳,获得10
9秒前
kdkfjaljk完成签到 ,获得积分10
9秒前
9秒前
CipherSage应助芒果采纳,获得10
9秒前
9秒前
10秒前
nini完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762