Liquid crystalline matrix-induced viscoelastic mechanical stimulation modulates activation and phenotypes of macrophage

巨噬细胞极化 材料科学 粘弹性 巨噬细胞 细胞生物学 生物物理学 体外 化学 生物 复合材料 生物化学
作者
Lichu Liu,Tao Huang,Zheng Xie,Zhangyao Ye,Jiaqing Zhang,Honghong Liao,Shenyu Yang,Kuangyang Yang,Mei Tu
出处
期刊:Journal of Biomaterials Applications [SAGE Publishing]
卷期号:37 (9): 1568-1581 被引量:2
标识
DOI:10.1177/08853282221136580
摘要

Accumulating evidence indicates that the mechanical microenvironment exerts profound influences on inflammation and immune modulation, which are likely to be key factors in successful tissue regeneration. The elastic modulus (Em) of the matrix may be a useful adjustable property to control macrophage activation and the overall inflammatory response. This study constituted a series of Em-tunable liquid crystalline cell model (HpCEs) resembling the viscoelastic characteristic of ECM and explored how mechanical microenvironment induced by liquid crystalline soft matter matrix affected macrophage activation and phenotypes. We have shown that HpCEs prepared in this work exhibited typical cholesteric liquid crystal phase and distinct viscoelastic rheological characteristics. All liquid crystalline HpCE matrices facilitated macrophages growth and maintained cell activity. Macrophages in lower-Em HpCE matrices were more likely to polarize toward the pro-inflammatory M1 phenotype. Conversely, the higher-Em HpCEs induced macrophages into an elongated shape and upregulated M2-related markers. Furthermore, the higher-Em HpCEs (HpCE-O1, HpCE-H2, HpCE-H1) could coax sequential polarization states of RAW264.7 from a classically activated “M1” state toward alternatively activated “M2” state in middle and later stage of cell culture (within 3–7 days in this work), suggesting that the HpCE-based strategies could manipulate the local immune microenvironment and promote the dominance of the pro-inflammatory signals in early stages, while M2 macrophages in later stages. The liquid crystalline soft mode fabricated in this work maybe offer a new design guideline for in vitro cell models and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
323431发布了新的文献求助10
2秒前
的奖学金喜欢喜欢大呼小叫难受完成签到 ,获得积分10
3秒前
不倦发布了新的文献求助10
3秒前
4秒前
999发布了新的文献求助10
7秒前
8秒前
SciGPT应助zs采纳,获得10
8秒前
10秒前
10秒前
11秒前
11秒前
小刘鸭鸭完成签到,获得积分10
12秒前
文文文文文完成签到 ,获得积分10
12秒前
JamesPei应助笑点低的斑马采纳,获得10
13秒前
独孤笑完成签到,获得积分20
13秒前
tartyang关注了科研通微信公众号
13秒前
13秒前
冯冯完成签到 ,获得积分10
14秒前
vippp发布了新的文献求助30
14秒前
田様应助胍基采纳,获得30
14秒前
雾黎颖完成签到 ,获得积分10
14秒前
15秒前
彭于晏应助阿源采纳,获得10
16秒前
16秒前
疯狂加载ing应助pophoo采纳,获得10
16秒前
pengyufen发布了新的文献求助10
18秒前
小蘑菇应助一二三采纳,获得10
19秒前
大白薯完成签到,获得积分10
19秒前
19秒前
wenwenjlu完成签到,获得积分10
20秒前
二二二发布了新的文献求助10
21秒前
坦率白竹发布了新的文献求助10
21秒前
赶紧毕业发布了新的文献求助10
22秒前
22秒前
独孤笑发布了新的文献求助10
23秒前
7890733发布了新的文献求助10
23秒前
Xujiamin完成签到 ,获得积分10
24秒前
李健应助songshu采纳,获得10
24秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352