Network-based structure optimization method of the anti-aircraft system

分类 一致性(知识库) 遗传算法 计算机科学 过程(计算) 集合(抽象数据类型) 帕累托原理 构造(python库) 多目标优化 生存能力 数学优化 约束(计算机辅助设计) 工程类 算法 人工智能 计算机网络 机器学习 数学 程序设计语言 操作系统 机械工程
作者
Qingsong Zhao,Junyi Ding,Jichao Li,Li Huachao,Boyuan Xia
出处
期刊:Chinese Journal of Systems Engineering and Electronics [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 374-395
标识
DOI:10.23919/jsee.2023.000019
摘要

The anti-aircraft system plays an irreplaceable role in modern combat. An anti-aircraft system consists of various types of functional entities interacting to destroy the hostile aircraft moving in high speed. The connecting structure of combat entities in it is of great importance for supporting the normal process of the system. In this paper, we explore the optimizing strategy of the structure of the anti-aircraft network by establishing extra communication channels between the combat entities. Firstly, the thought of combat network model (CNM) is borrowed to model the anti-aircraft system as a heterogeneous network. Secondly, the optimization objectives are determined as the survivability and the accuracy of the system. To specify these objectives, the information chain and accuracy chain are constructed based on CNM. The causal strength (CAST) logic and influence network (IN) are introduced to illustrate the establishment of the accuracy chain. Thirdly, the optimization constraints are discussed and set in three aspects: time, connection feasibility and budget. The time constraint network (TCN) is introduced to construct the timing chain and help to detect the timing consistency. Then, the process of the multi-objective optimization of the structure of the anti-aircraft system is designed. Finally, a simulation is conducted to prove the effectiveness and feasibility of the proposed method. Non-dominated sorting based genetic algorithm-II (NSGA2) is used to solve the multi-objective optimization problem and two other algorithms including non-dominated sorting based genetic algorithm-III (NSGA3) and strength Pareto evolutionary algorithm-II (SPEA2) are employed as comparisons. The deciders and system builders can make the anti-aircraft system improved in the survivability and accuracy in the combat reality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏夏完成签到,获得积分10
4秒前
7秒前
幽默的妍完成签到 ,获得积分10
8秒前
可可完成签到 ,获得积分10
10秒前
言午完成签到 ,获得积分10
10秒前
junjie发布了新的文献求助10
10秒前
浮浮世世完成签到,获得积分10
14秒前
淡然的芷荷完成签到 ,获得积分10
17秒前
fge完成签到,获得积分10
19秒前
玻璃外的世界完成签到,获得积分10
23秒前
1111111111应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
leaolf应助科研通管家采纳,获得150
26秒前
Ava应助科研通管家采纳,获得10
26秒前
顾矜应助科研通管家采纳,获得10
26秒前
任kun发布了新的文献求助10
27秒前
好学的泷泷完成签到 ,获得积分10
28秒前
nano完成签到 ,获得积分10
28秒前
32秒前
纯真保温杯完成签到 ,获得积分10
36秒前
刘佳佳完成签到 ,获得积分10
37秒前
宝贝完成签到 ,获得积分10
39秒前
玛斯特尔完成签到,获得积分10
42秒前
看文献完成签到,获得积分0
43秒前
Joanne完成签到 ,获得积分10
43秒前
hikevin126完成签到,获得积分10
47秒前
哈哈哈完成签到 ,获得积分10
49秒前
mango发布了新的文献求助10
49秒前
安详映阳完成签到 ,获得积分10
53秒前
杨杨杨完成签到,获得积分10
57秒前
jzmulyl完成签到,获得积分10
59秒前
506407完成签到,获得积分10
1分钟前
aki完成签到 ,获得积分10
1分钟前
天才小榴莲完成签到,获得积分10
1分钟前
朴素羊完成签到 ,获得积分10
1分钟前
jzmupyj完成签到,获得积分10
1分钟前
孤单心事完成签到,获得积分10
1分钟前
沉静的乘风完成签到,获得积分10
1分钟前
lyf完成签到 ,获得积分10
1分钟前
活泼的大船完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918746
求助须知:如何正确求助?哪些是违规求助? 4191111
关于积分的说明 13015764
捐赠科研通 3961150
什么是DOI,文献DOI怎么找? 2171519
邀请新用户注册赠送积分活动 1189578
关于科研通互助平台的介绍 1098155