Network-based structure optimization method of the anti-aircraft system

分类 一致性(知识库) 遗传算法 计算机科学 过程(计算) 集合(抽象数据类型) 帕累托原理 构造(python库) 多目标优化 生存能力 数学优化 约束(计算机辅助设计) 工程类 算法 人工智能 计算机网络 机器学习 数学 机械工程 程序设计语言 操作系统
作者
Qingsong Zhao,Junyi Ding,Jichao Li,Li Huachao,Boyuan Xia
出处
期刊:Chinese Journal of Systems Engineering and Electronics [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 374-395
标识
DOI:10.23919/jsee.2023.000019
摘要

The anti-aircraft system plays an irreplaceable role in modern combat. An anti-aircraft system consists of various types of functional entities interacting to destroy the hostile aircraft moving in high speed. The connecting structure of combat entities in it is of great importance for supporting the normal process of the system. In this paper, we explore the optimizing strategy of the structure of the anti-aircraft network by establishing extra communication channels between the combat entities. Firstly, the thought of combat network model (CNM) is borrowed to model the anti-aircraft system as a heterogeneous network. Secondly, the optimization objectives are determined as the survivability and the accuracy of the system. To specify these objectives, the information chain and accuracy chain are constructed based on CNM. The causal strength (CAST) logic and influence network (IN) are introduced to illustrate the establishment of the accuracy chain. Thirdly, the optimization constraints are discussed and set in three aspects: time, connection feasibility and budget. The time constraint network (TCN) is introduced to construct the timing chain and help to detect the timing consistency. Then, the process of the multi-objective optimization of the structure of the anti-aircraft system is designed. Finally, a simulation is conducted to prove the effectiveness and feasibility of the proposed method. Non-dominated sorting based genetic algorithm-II (NSGA2) is used to solve the multi-objective optimization problem and two other algorithms including non-dominated sorting based genetic algorithm-III (NSGA3) and strength Pareto evolutionary algorithm-II (SPEA2) are employed as comparisons. The deciders and system builders can make the anti-aircraft system improved in the survivability and accuracy in the combat reality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
小胖鱼完成签到,获得积分20
1秒前
Grayball应助啊这啥啊这是采纳,获得10
2秒前
cf完成签到,获得积分10
2秒前
王一线完成签到,获得积分10
3秒前
3秒前
3秒前
栗子完成签到,获得积分10
3秒前
bkagyin应助格格星采纳,获得10
4秒前
Youdge完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
yyf发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
Mian发布了新的文献求助10
6秒前
完美世界应助张静静采纳,获得10
6秒前
wu完成签到,获得积分10
6秒前
朴素的书琴完成签到,获得积分10
7秒前
dai完成签到,获得积分10
7秒前
务实大船发布了新的文献求助10
7秒前
四夕水窖完成签到,获得积分10
8秒前
FashionBoy应助曾经的臻采纳,获得10
8秒前
白白发布了新的文献求助10
8秒前
打打应助sternen采纳,获得30
8秒前
111完成签到,获得积分10
8秒前
加减乘除发布了新的文献求助10
9秒前
小憩发布了新的文献求助10
9秒前
ASZXDW完成签到,获得积分10
9秒前
飞翔的小舟完成签到,获得积分20
9秒前
csa1007完成签到,获得积分10
9秒前
纷纷故事完成签到,获得积分10
10秒前
10秒前
哲999发布了新的文献求助10
10秒前
麦苳完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740