光催化
异质结
材料科学
光热治疗
非阻塞I/O
制氢
催化作用
光热效应
纳米颗粒
可见光谱
化学工程
分解水
纳米技术
化学
光电子学
工程类
生物化学
作者
Jiawei Hu,Jiaming Li,Zhongyi Pu,Wen Xiao,Huan Yu,Zhihao Zhang,Yu Fang,Chao Liu,Qinfang Zhang
标识
DOI:10.1016/j.jcis.2024.03.178
摘要
Heterostructured visible-light-responsive photocatalysts represent a prospective approach to achieve efficient solar-to-chemical energy conversion. Herein, we propose a facile self-assembly technique to synthesize NiO nanoparticles/C3N5 nanosheets (NOCN) heterojunctions for hydrogen (H2) evolution catalysis and hydrogen peroxide (H2O2) production under visible light. In this regard, the black NiO nanoparticles (NPs) were tightly anchored on the surface of C3N5 nanosheets (CNNS) to construct S-scheme NOCN heterojunction, enabling efficient charge separation and high redox capability. Obtained results elucidated that the incorporated NiO NPs significantly promote light-harvesting efficiency and photo-to-thermal capacity over the NOCN composites. The enhanced photothermal effect facilitates the charge carrier transfer rate across the heterojunction and boosts the surface reaction kinetics. Accordingly, the photocatalytic performances of CNNS for H2 release and H2O2 production can be manipulated by introducing NiO NPs. The modified photocatalytic properties of NOCN composites are ascribed to the synergistic effects of all integrated components and the S-scheme heterojunction formation. Impressively, the high H2 evolution photocatalysis efficiency of NOCN nano-catalysts in seawater certifies their potential environmental applicability. Among all, the 12-NOCN nano-catalyst exhibits a higher photocatalytic efficiency for H2 release (112.2 μmol∙g−1∙h−1) and H2O2 production (91.2 μmol∙L−1∙h−1). Besides, the 12-NOCN nano-catalyst reveals excellent recyclability and structural stability. Additionally, the possible mechanism for photothermal-assisted photocatalysis is proposed. This work affords a feasible pathway to design photothermal-assisted S-scheme heterojunctions for diverse photocatalytic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI