亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TransC-ac4C: Identification of N4-acetylcytidine (ac4C) sites in mRNA using deep learning

人工智能 变压器 卷积神经网络 计算机科学 模式识别(心理学) 特征提取 深度学习 机器学习 计算生物学 生物 工程类 电气工程 电压
作者
Dian Liu,Zi Liu,Yunpeng Xia,Zhikang Wang,Jiangning Song,Dong‐Jun Yu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1403-1412 被引量:1
标识
DOI:10.1109/tcbb.2024.3386972
摘要

N4-acetylcytidine (ac4C) is a post-transcriptional modification in mRNA that is critical in mRNA translation in terms of stability and regulation. In the past few years, numerous approaches employing convolutional neural networks (CNN) and Transformer have been proposed for the identification of ac4C sites, with each variety of approaches processing distinct characteristics. CNN-based methods excels at extracting local features and positional information, whereas Transformer-based ones stands out in establishing long-range dependencies and generating global representations. Given the importance of both local and global features in mRNA ac4C sites identification, we propose a novel method termed TransC-ac4C which combines CNN and Transformer together for enhancing the feature extraction capability and improving the identification accuracy. Five different feature encoding strategies (One-hot, NCP, ND, EIIP, and K-mer) are employed to generate the mRNA sequence representations, in which way the sequence attributes and physical and chemical properties of the sequences can be embedded. To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the CNN is employed to process five single features, stitch them together and feed them to the Transformer layer. Then, our approach employs CNN to extract local features and Transformer subsequently to establish global long-range dependencies among extracted features. We use 5-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 81.42
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
斯文败类应助端庄千青采纳,获得10
4秒前
量子星尘发布了新的文献求助10
6秒前
拿铁小笼包完成签到,获得积分10
6秒前
10秒前
细心的雨竹完成签到,获得积分10
11秒前
11秒前
嘻嘻完成签到,获得积分10
12秒前
青柠发布了新的文献求助10
16秒前
充电宝应助fzy采纳,获得10
17秒前
19秒前
吱吱吱吱发布了新的文献求助10
23秒前
清秀芝麻完成签到 ,获得积分10
27秒前
小四发布了新的文献求助20
27秒前
kangkang完成签到,获得积分10
27秒前
Jasper应助糖拌西红柿采纳,获得10
30秒前
mmyhn完成签到,获得积分10
33秒前
35秒前
苗条书桃完成签到,获得积分10
35秒前
科研通AI6应助殷楷霖采纳,获得10
36秒前
1717发布了新的文献求助10
38秒前
kmy完成签到 ,获得积分10
38秒前
Y26完成签到,获得积分10
41秒前
43秒前
43秒前
洁净的千凡完成签到 ,获得积分20
44秒前
小圭发布了新的文献求助10
47秒前
Ava应助科研通管家采纳,获得10
49秒前
Kiki发布了新的文献求助10
50秒前
科研通AI6应助幸运幸福采纳,获得10
51秒前
54秒前
小四完成签到,获得积分20
55秒前
59秒前
59秒前
59秒前
小二郎应助优秀星星采纳,获得10
1分钟前
今后应助可靠的寒风采纳,获得10
1分钟前
1分钟前
Kiki完成签到,获得积分10
1分钟前
fzy发布了新的文献求助10
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644428
求助须知:如何正确求助?哪些是违规求助? 4764178
关于积分的说明 15025100
捐赠科研通 4802856
什么是DOI,文献DOI怎么找? 2567622
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484790