TransC-ac4C: Identification of N4-acetylcytidine (ac4C) sites in mRNA using deep learning

人工智能 变压器 卷积神经网络 计算机科学 模式识别(心理学) 特征提取 深度学习 机器学习 计算生物学 生物 工程类 电气工程 电压
作者
Dian Liu,Zi Liu,Yunpeng Xia,Zhikang Wang,Jiangning Song,Dong‐Jun Yu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1403-1412 被引量:1
标识
DOI:10.1109/tcbb.2024.3386972
摘要

N4-acetylcytidine (ac4C) is a post-transcriptional modification in mRNA that is critical in mRNA translation in terms of stability and regulation. In the past few years, numerous approaches employing convolutional neural networks (CNN) and Transformer have been proposed for the identification of ac4C sites, with each variety of approaches processing distinct characteristics. CNN-based methods excels at extracting local features and positional information, whereas Transformer-based ones stands out in establishing long-range dependencies and generating global representations. Given the importance of both local and global features in mRNA ac4C sites identification, we propose a novel method termed TransC-ac4C which combines CNN and Transformer together for enhancing the feature extraction capability and improving the identification accuracy. Five different feature encoding strategies (One-hot, NCP, ND, EIIP, and K-mer) are employed to generate the mRNA sequence representations, in which way the sequence attributes and physical and chemical properties of the sequences can be embedded. To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the CNN is employed to process five single features, stitch them together and feed them to the Transformer layer. Then, our approach employs CNN to extract local features and Transformer subsequently to establish global long-range dependencies among extracted features. We use 5-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 81.42
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助小哥采纳,获得10
刚刚
英俊的铭应助霞霞采纳,获得10
刚刚
刘妞妞应助酷炫翠桃采纳,获得10
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
活力安筠应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得30
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
jie酱拌面应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
浮游应助无心的依秋采纳,获得40
1秒前
852应助科研通管家采纳,获得10
1秒前
1秒前
jie酱拌面应助科研通管家采纳,获得10
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
热心子轩应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
搜集达人应助adasdad采纳,获得10
2秒前
all应助科研通管家采纳,获得20
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
2秒前
178应助科研通管家采纳,获得10
2秒前
w_tiger完成签到 ,获得积分10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
顾矜应助还单身的香菇采纳,获得10
3秒前
聪明无敌小腚宝完成签到,获得积分10
3秒前
wz完成签到 ,获得积分10
3秒前
英俊的铭应助CHL5722采纳,获得10
4秒前
5秒前
5秒前
zj发布了新的文献求助10
5秒前
南枝完成签到,获得积分10
5秒前
科研通AI5应助qwe31533采纳,获得30
5秒前
科目三应助yukky采纳,获得10
5秒前
campus完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513