TransC-ac4C: Identification of N4-acetylcytidine (ac4C) sites in mRNA using deep learning

人工智能 变压器 卷积神经网络 计算机科学 模式识别(心理学) 特征提取 深度学习 机器学习 计算生物学 生物 工程类 电气工程 电压
作者
Dian Liu,Zi Liu,Yunpeng Xia,Zhikang Wang,Jiangning Song,Dong‐Jun Yu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1403-1412 被引量:1
标识
DOI:10.1109/tcbb.2024.3386972
摘要

N4-acetylcytidine (ac4C) is a post-transcriptional modification in mRNA that is critical in mRNA translation in terms of stability and regulation. In the past few years, numerous approaches employing convolutional neural networks (CNN) and Transformer have been proposed for the identification of ac4C sites, with each variety of approaches processing distinct characteristics. CNN-based methods excels at extracting local features and positional information, whereas Transformer-based ones stands out in establishing long-range dependencies and generating global representations. Given the importance of both local and global features in mRNA ac4C sites identification, we propose a novel method termed TransC-ac4C which combines CNN and Transformer together for enhancing the feature extraction capability and improving the identification accuracy. Five different feature encoding strategies (One-hot, NCP, ND, EIIP, and K-mer) are employed to generate the mRNA sequence representations, in which way the sequence attributes and physical and chemical properties of the sequences can be embedded. To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the CNN is employed to process five single features, stitch them together and feed them to the Transformer layer. Then, our approach employs CNN to extract local features and Transformer subsequently to establish global long-range dependencies among extracted features. We use 5-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 81.42
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小人物发布了新的文献求助10
刚刚
小杜发布了新的文献求助10
刚刚
领导范儿应助JIAca采纳,获得10
1秒前
难过中心完成签到,获得积分10
1秒前
吃生肉的孙尚香完成签到,获得积分10
2秒前
2秒前
丹布里完成签到,获得积分10
2秒前
3秒前
华仔应助friendship_x采纳,获得10
3秒前
3秒前
3秒前
狂野映萱发布了新的文献求助10
3秒前
黄花发布了新的文献求助10
4秒前
wanci应助wsx采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
斯文败类应助杨佳霖采纳,获得10
6秒前
难过中心发布了新的文献求助20
6秒前
科研通AI6应助guandada采纳,获得20
7秒前
JIAca完成签到,获得积分10
7秒前
7秒前
李健应助鱼糕采纳,获得10
8秒前
多余完成签到,获得积分10
8秒前
8秒前
高高衣发布了新的文献求助10
9秒前
共享精神应助李兴采纳,获得10
9秒前
闪闪盼芙发布了新的文献求助10
9秒前
二十八画生完成签到,获得积分10
9秒前
执着的枫叶完成签到,获得积分10
10秒前
10秒前
狂野映萱完成签到,获得积分10
11秒前
善学以致用应助西哈哈采纳,获得10
11秒前
11秒前
12秒前
13秒前
Ying应助grandi采纳,获得30
13秒前
13秒前
彩色傲菡发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5398468
求助须知:如何正确求助?哪些是违规求助? 4518219
关于积分的说明 14067913
捐赠科研通 4430339
什么是DOI,文献DOI怎么找? 2432773
邀请新用户注册赠送积分活动 1425163
关于科研通互助平台的介绍 1404175