TransC-ac4C: Identification of N4-acetylcytidine (ac4C) sites in mRNA using deep learning

人工智能 变压器 卷积神经网络 计算机科学 模式识别(心理学) 特征提取 深度学习 机器学习 计算生物学 生物 工程类 电压 电气工程
作者
Dian Liu,Zi Liu,Yunpeng Xia,Zhikang Wang,Jiangning Song,Dong‐Jun Yu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tcbb.2024.3386972
摘要

N4-acetylcytidine (ac4C) is a post-transcriptional modification in mRNA that is critical in mRNA translation in terms of stability and regulation. In the past few years, numerous approaches employing convolutional neural networks (CNN) and Transformer have been proposed for the identification of ac4C sites, with each variety of approaches processing distinct characteristics. CNN-based methods excels at extracting local features and positional information, whereas Transformer-based ones stands out in establishing long-range dependencies and generating global representations. Given the importance of both local and global features in mRNA ac4C sites identification, we propose a novel method termed TransC-ac4C which combines CNN and Transformer together for enhancing the feature extraction capability and improving the identification accuracy. Five different feature encoding strategies (One-hot, NCP, ND, EIIP, and K-mer) are employed to generate the mRNA sequence representations, in which way the sequence attributes and physical and chemical properties of the sequences can be embedded. To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the CNN is employed to process five single features, stitch them together and feed them to the Transformer layer. Then, our approach employs CNN to extract local features and Transformer subsequently to establish global long-range dependencies among extracted features. We use 5-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 81.42.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助文艺的冬卉采纳,获得10
1秒前
3秒前
诸葛藏藏完成签到 ,获得积分10
3秒前
闲听花落完成签到 ,获得积分10
5秒前
风中寻凝发布了新的文献求助20
6秒前
伶俐碧萱完成签到 ,获得积分10
6秒前
6秒前
6秒前
无辜的怜烟完成签到 ,获得积分10
7秒前
7秒前
QING完成签到 ,获得积分20
8秒前
迷人岩发布了新的文献求助10
8秒前
8秒前
田轲关注了科研通微信公众号
8秒前
典雅碧空发布了新的文献求助30
9秒前
Either发布了新的文献求助10
11秒前
11秒前
11秒前
Lost发布了新的文献求助10
12秒前
cc完成签到,获得积分20
13秒前
277完成签到 ,获得积分10
14秒前
14秒前
macaron发布了新的文献求助10
14秒前
我是老大应助迷人岩采纳,获得10
16秒前
17秒前
典雅碧空完成签到,获得积分10
18秒前
21秒前
可靠靖琪发布了新的文献求助10
22秒前
yzhwzh完成签到,获得积分20
23秒前
香蕉觅云应助棋士采纳,获得10
23秒前
Hhd完成签到,获得积分10
24秒前
英俊的铭应助Lost采纳,获得10
25秒前
Jaden完成签到,获得积分10
25秒前
田轲发布了新的文献求助10
27秒前
安静的棉花糖完成签到 ,获得积分10
28秒前
Mrmao0213发布了新的文献求助10
29秒前
liagse完成签到,获得积分10
29秒前
30秒前
杳鸢应助啊哈哈哈哈采纳,获得10
31秒前
X子千完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030