TransC-ac4C: Identification of N4-acetylcytidine (ac4C) sites in mRNA using deep learning

人工智能 变压器 卷积神经网络 计算机科学 模式识别(心理学) 特征提取 深度学习 机器学习 计算生物学 生物 工程类 电压 电气工程
作者
Dian Liu,Zi Liu,Yunpeng Xia,Zhikang Wang,Jiangning Song,Dong‐Jun Yu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tcbb.2024.3386972
摘要

N4-acetylcytidine (ac4C) is a post-transcriptional modification in mRNA that is critical in mRNA translation in terms of stability and regulation. In the past few years, numerous approaches employing convolutional neural networks (CNN) and Transformer have been proposed for the identification of ac4C sites, with each variety of approaches processing distinct characteristics. CNN-based methods excels at extracting local features and positional information, whereas Transformer-based ones stands out in establishing long-range dependencies and generating global representations. Given the importance of both local and global features in mRNA ac4C sites identification, we propose a novel method termed TransC-ac4C which combines CNN and Transformer together for enhancing the feature extraction capability and improving the identification accuracy. Five different feature encoding strategies (One-hot, NCP, ND, EIIP, and K-mer) are employed to generate the mRNA sequence representations, in which way the sequence attributes and physical and chemical properties of the sequences can be embedded. To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the CNN is employed to process five single features, stitch them together and feed them to the Transformer layer. Then, our approach employs CNN to extract local features and Transformer subsequently to establish global long-range dependencies among extracted features. We use 5-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 81.42.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实的老虎完成签到,获得积分10
1秒前
坚强丹雪完成签到,获得积分10
3秒前
5秒前
7秒前
WZ0904发布了新的文献求助10
9秒前
狂野静曼完成签到 ,获得积分10
10秒前
武映易完成签到 ,获得积分10
12秒前
zzz发布了新的文献求助10
13秒前
14秒前
大蒜味酸奶钊完成签到 ,获得积分10
14秒前
鱼宇纸完成签到 ,获得积分10
14秒前
LEE完成签到,获得积分20
14秒前
14秒前
Ava应助无限的绿真采纳,获得10
16秒前
小马甲应助xiongdi521采纳,获得10
16秒前
科研通AI5应助陶醉觅夏采纳,获得200
19秒前
憨鬼憨切发布了新的文献求助10
19秒前
19秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
21秒前
22秒前
23秒前
hh应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
Eva完成签到,获得积分10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
清爽老九应助科研通管家采纳,获得20
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
greenPASS666发布了新的文献求助10
24秒前
涂欣桐应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
secbox完成签到,获得积分10
25秒前
刘哈哈发布了新的文献求助30
25秒前
xyzdmmm完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849