TransC-ac4C: Identification of N4-acetylcytidine (ac4C) sites in mRNA using deep learning

人工智能 变压器 卷积神经网络 计算机科学 模式识别(心理学) 特征提取 深度学习 机器学习 计算生物学 生物 工程类 电气工程 电压
作者
Dian Liu,Zi Liu,Yunpeng Xia,Zhikang Wang,Jiangning Song,Dong‐Jun Yu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tcbb.2024.3386972
摘要

N4-acetylcytidine (ac4C) is a post-transcriptional modification in mRNA that is critical in mRNA translation in terms of stability and regulation. In the past few years, numerous approaches employing convolutional neural networks (CNN) and Transformer have been proposed for the identification of ac4C sites, with each variety of approaches processing distinct characteristics. CNN-based methods excels at extracting local features and positional information, whereas Transformer-based ones stands out in establishing long-range dependencies and generating global representations. Given the importance of both local and global features in mRNA ac4C sites identification, we propose a novel method termed TransC-ac4C which combines CNN and Transformer together for enhancing the feature extraction capability and improving the identification accuracy. Five different feature encoding strategies (One-hot, NCP, ND, EIIP, and K-mer) are employed to generate the mRNA sequence representations, in which way the sequence attributes and physical and chemical properties of the sequences can be embedded. To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the CNN is employed to process five single features, stitch them together and feed them to the Transformer layer. Then, our approach employs CNN to extract local features and Transformer subsequently to establish global long-range dependencies among extracted features. We use 5-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 81.42.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luna发布了新的文献求助10
1秒前
Mr杜发布了新的文献求助10
1秒前
2秒前
2秒前
扶风完成签到,获得积分10
3秒前
4秒前
hoojack发布了新的文献求助10
4秒前
哎呀我去发布了新的文献求助10
4秒前
5秒前
允初完成签到,获得积分20
6秒前
6秒前
amg发布了新的文献求助10
6秒前
mmmmm发布了新的文献求助10
7秒前
7秒前
wjy发布了新的文献求助10
8秒前
子车茗应助123456采纳,获得10
8秒前
愉快的小鸽子完成签到,获得积分10
9秒前
Luna完成签到,获得积分10
9秒前
哭唧唧完成签到,获得积分10
9秒前
10秒前
景自端发布了新的文献求助10
10秒前
Singularity应助恩拜尔生物采纳,获得10
11秒前
Singularity应助恩拜尔生物采纳,获得10
11秒前
Owen应助沉默的西牛采纳,获得10
11秒前
善学以致用应助hoojack采纳,获得10
11秒前
算命的完成签到,获得积分10
11秒前
11秒前
鲜于夜白完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
今天看文献了吗完成签到,获得积分10
13秒前
13秒前
14秒前
个性的紫菜应助奎奎采纳,获得10
14秒前
15秒前
Wenhao Zhao完成签到,获得积分10
16秒前
思源应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145621
求助须知:如何正确求助?哪些是违规求助? 2797097
关于积分的说明 7822848
捐赠科研通 2453435
什么是DOI,文献DOI怎么找? 1305652
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601469