Unifying Global-Local Representations in Salient Object Detection With Transformers

突出 变压器 计算机科学 人工智能 工程类 电气工程 电压
作者
Sucheng Ren,Nanxuan Zhao,Qiang Wen,Guoqiang Han,Shengfeng He
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2870-2879 被引量:6
标识
DOI:10.1109/tetci.2024.3380442
摘要

The fully convolutional network (FCN) has dominated salient object detection for a long period. However, the locality of CNN requires the model deep enough to have a global receptive field and such a deep model always leads to the loss of local details. In this paper, we introduce a new attention-based encoder, vision transformer, into salient object detection to ensure the globalization of the representations from shallow to deep layers. With the global view in very shallow layers, the transformer encoder preserves more local representations to recover the spatial details in final saliency maps. Besides, as each layer can capture a global view of its previous layer, adjacent layers can implicitly maximize the representation differences and minimize the redundant features, making every output feature of transformer layers contribute uniquely to the final prediction. To decode features from the transformer, we propose a simple yet effective deeply-transformed decoder. The decoder densely decodes and upsamples the transformer features, generating the final saliency map with less noise injection. Experimental results demonstrate that our method significantly outperforms other FCN-based and transformer-based methods in five benchmarks by a large margin, with an average of 12.17% improvement in terms of Mean Absolute Error (MAE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bxxxxx应助王京华采纳,获得30
3秒前
5秒前
烟花应助棋士采纳,获得10
6秒前
妮儿完成签到,获得积分10
6秒前
钫人完成签到,获得积分10
6秒前
tt完成签到,获得积分10
6秒前
繁荣的凝荷完成签到 ,获得积分10
7秒前
mylaodao完成签到,获得积分0
7秒前
科目三应助灵巧的芷容采纳,获得10
8秒前
Mayday完成签到,获得积分10
11秒前
李爱国应助Jun采纳,获得10
11秒前
12秒前
12秒前
xx发布了新的文献求助10
16秒前
17秒前
CodeCraft应助帅气的小鸭子采纳,获得10
18秒前
小蘑菇应助不想读书采纳,获得10
18秒前
123456完成签到,获得积分10
19秒前
棋士发布了新的文献求助10
19秒前
yasiraziz完成签到,获得积分10
23秒前
紫色奶萨完成签到,获得积分10
25秒前
SYLH应助lllll采纳,获得10
26秒前
科目三应助lllll采纳,获得10
26秒前
29秒前
30秒前
30秒前
一颗烂番茄完成签到,获得积分10
31秒前
31秒前
不想读书发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
35秒前
36秒前
咯咚发布了新的文献求助10
37秒前
落寞青文发布了新的文献求助10
37秒前
xx完成签到,获得积分10
38秒前
XP完成签到 ,获得积分10
42秒前
44秒前
哇哇哇哇我应助半斤采纳,获得20
45秒前
46秒前
KatzeBaliey完成签到,获得积分10
48秒前
Janusfaces完成签到,获得积分10
49秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951079
求助须知:如何正确求助?哪些是违规求助? 3496471
关于积分的说明 11082339
捐赠科研通 3226915
什么是DOI,文献DOI怎么找? 1784061
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801052