Advancing urban traffic accident forecasting through sparse spatio-temporal dynamic learning

可解释性 计算机科学 超图 机器学习 人工智能 数据挖掘 块(置换群论) 数学 几何学 离散数学
作者
Pengfei Cui,Xiaobao Yang,Mohamed Abdel‐Aty,Jinlei Zhang,Xuedong Yan
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:200: 107564-107564 被引量:1
标识
DOI:10.1016/j.aap.2024.107564
摘要

Traffic accidents have emerged as one of the most public health safety matters, raising concerns from both the public and urban administrators. The ability to accurately predict traffic accident not only supports the governmental decision-making in advance but also enhances public confidence in safety measures. However, the efficacy of traditional spatio-temporal prediction models are compromised by the skewed distributions and sparse labeling of accident data. To this end, we propose a Sparse Spatio-Temporal Dynamic Hypergraph Learning (SST-DHL) framework that captures higher-order dependencies in sparse traffic accidents by combining hypergraph learning and self-supervised learning. The SST-DHL model incorporates a multi-view spatiotemporal convolution block to capture local correlations and semantics of traffic accidents, a cross-regional dynamic hypergraph learning model to identify global spatiotemporal dependencies, and a two-supervised self-learning paradigm to capture both local and global spatiotemporal patterns. Through experimentation on New York City and London accident datasets, we demonstrate that our proposed SST-DHL exhibits significant improvements compared to optimal baseline models at different sparsity levels. Additionally, it offers enhanced interpretability of results by elucidating complex spatio-temporal dependencies among various traffic accident instances. Our study demonstrates the effectiveness of the SST-DHL framework in accurately predicting traffic accidents, thereby enhancing public safety and trust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zwc完成签到,获得积分10
1秒前
2秒前
chenyinglin发布了新的文献求助10
3秒前
3秒前
3秒前
Ava应助嘟嘟宝宝妈妈采纳,获得10
3秒前
6秒前
隐形曼青应助流沙采纳,获得10
6秒前
Ln发布了新的文献求助10
7秒前
叾屾发布了新的文献求助10
7秒前
SciGPT应助ll采纳,获得10
7秒前
7秒前
fuchao发布了新的文献求助10
7秒前
彭于彦祖应助米恩采纳,获得30
8秒前
舒适忆枫发布了新的文献求助10
8秒前
11秒前
12秒前
Sholo完成签到 ,获得积分10
13秒前
13秒前
汎影发布了新的文献求助10
14秒前
14秒前
CodeCraft应助龙江阿祖采纳,获得10
14秒前
咕咕应助龙江阿祖采纳,获得10
14秒前
15秒前
无辜的皮皮虾完成签到,获得积分20
15秒前
16秒前
Akim应助chenyinglin采纳,获得80
16秒前
无花果应助chenyinglin采纳,获得10
16秒前
可爱的函函应助chenyinglin采纳,获得10
16秒前
科研通AI2S应助chenyinglin采纳,获得10
16秒前
爆米花应助chenyinglin采纳,获得50
16秒前
008发布了新的文献求助10
17秒前
17秒前
20秒前
羊咩咩发布了新的文献求助10
20秒前
21秒前
星辰大海应助sun采纳,获得10
21秒前
博士伦666完成签到 ,获得积分10
21秒前
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236991
求助须知:如何正确求助?哪些是违规求助? 2882603
关于积分的说明 8227430
捐赠科研通 2550751
什么是DOI,文献DOI怎么找? 1379439
科研通“疑难数据库(出版商)”最低求助积分说明 648635
邀请新用户注册赠送积分活动 624245