De-Biased Disentanglement Learning for Pulmonary Embolism Survival Prediction on Multimodal Data

计算机科学 肺栓塞 人工智能 医学 内科学
作者
Zhusi Zhong,Jie Li,Shreyas Kulkarni,Helen Zhang,Fayez H. Fayad,Li Yang,Scott Collins,Harrison X. Bai,Sun Ho Ahn,Michael K. Atalay,Xinbo Gao,Zhicheng Jiao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3732-3741
标识
DOI:10.1109/jbhi.2024.3384848
摘要

Health disparities among marginalized populations with lower socioeconomic status significantly impact the fairness and effectiveness of healthcare delivery. The increasing integration of artificial intelligence (AI) into healthcare presents an opportunity to address these inequalities, provided that AI models are free from bias. This paper aims to address the bias challenges by population disparities within healthcare systems, existing in the presentation of and development of algorithms, leading to inequitable medical implementation for conditions such as pulmonary embolism (PE) prognosis. In this study, we explore the diversity of biases in healthcare systems, which highlights the need for a holistic framework to reduce bias by complementary aggregation. By leveraging de-biasing deep survival prediction models, we propose a framework that disentangles identifiable information from images, text reports, and clinical variables to mitigate potential biases within multimodal datasets. Our study offers several advantages over traditional clinical-based survival prediction methods, including richer survival-related characteristics and bias-complementary predicted results. By improving the robustness of survival analysis through this framework, we aim to benefit patients, clinicians, and researchers by improving fairness and accuracy in healthcare AI systems. The code is available at https://github.com/zzs95/fairPE-SA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yszm完成签到,获得积分10
2秒前
pray完成签到,获得积分10
3秒前
落后谷兰发布了新的文献求助10
5秒前
7秒前
蔚蓝天空完成签到,获得积分10
7秒前
姚安白发布了新的文献求助10
8秒前
鱼缸水发布了新的文献求助10
10秒前
10秒前
风趣绮烟发布了新的文献求助10
10秒前
pcr发布了新的文献求助10
11秒前
冬雾完成签到,获得积分20
12秒前
义气的从蕾完成签到,获得积分10
12秒前
basil发布了新的文献求助10
12秒前
科研通AI2S应助Fancy采纳,获得10
14秒前
落尘完成签到,获得积分10
15秒前
15秒前
思垢发布了新的文献求助10
15秒前
安静发箍完成签到 ,获得积分10
17秒前
wy.he应助义气的从蕾采纳,获得10
18秒前
青青草原我最狂完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
完美世界应助保洁王姐采纳,获得10
19秒前
王健健完成签到,获得积分10
20秒前
乐观的芫发布了新的文献求助10
21秒前
Eazin发布了新的文献求助10
23秒前
23秒前
司南应助鑫7采纳,获得10
23秒前
nz完成签到,获得积分10
23秒前
orixero应助杨阳洋采纳,获得10
23秒前
24秒前
Lum1na发布了新的文献求助10
25秒前
科研通AI2S应助风趣绮烟采纳,获得10
25秒前
ding应助开朗满天采纳,获得10
26秒前
FashionBoy应助姚安白采纳,获得10
27秒前
Fancy发布了新的文献求助10
29秒前
29秒前
29秒前
NexusExplorer应助binnn采纳,获得10
29秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270735
求助须知:如何正确求助?哪些是违规求助? 2910117
关于积分的说明 8352503
捐赠科研通 2580598
什么是DOI,文献DOI怎么找? 1403560
科研通“疑难数据库(出版商)”最低求助积分说明 655864
邀请新用户注册赠送积分活动 635237