梯度升压
产量(工程)
Boosting(机器学习)
活性炭
生物量(生态学)
响应面法
计算机科学
木质纤维素生物量
环境科学
制浆造纸工业
化学
机器学习
工艺工程
生物燃料
材料科学
工程类
随机森林
废物管理
生物
农学
有机化学
复合材料
吸附
作者
Rongge Zou,Zhibin Yang,Jiahui Zhang,Ryan Lei,W Zhang,Fitria Fitria,Daniel C.W. Tsang,Joshua S. Heyne,Xiao Zhang,Roger Ruan,Hanwu Lei
标识
DOI:10.1016/j.biortech.2024.130624
摘要
The successful application of gradient boosting regression (GBR) in machine learning to forecast surface area, pore volume, and yield in biomass-derived activated carbon (AC) production underscores its potential for enhancing manufacturing processes. The GBR model, collecting 17 independent variables for two-step activation (2-SA) and 14 for one-step activation (1-SA), demonstrates effectiveness across three datasets—1-SA, 2-SA, and a combined dataset. Notably, in 1-SA, the GBR model yields R2 values of 0.76, 0.90, and 0.83 for TPV, yield, and SSA respectively, and records R2 of 0.90 and 0.91 for yield in 2-SA and combined datasets. The model highlights the significance of the soaking procedure alongside activation temperature in shaping AC properties with 1-SA or 2-SA, illustrating machine learning's potential in optimizing AC production processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI